首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invagination of the plasma membrane in plant cells forms peripheral or endocytic structures which often contain a complement of membrane-bound vesicles. These structures, or secondary vacuoles, move with the streaming cytoplasm although their velocities are somewhat slower than that for the various organelles within the cytoplasm. They glide over the nucleus or flow from the peripheral cytoplasm onto a transvacuolar strand and continue unabated along the length of a strand. These structures may detach from the plasma membrane as sacs to become positioned in the cytoplasm directly under the tonoplast and project into the primary vacuole. Some endocytic vacuoles may separate from the peripheral cytoplasm and remain free within the primary vacuole; subsequently they can re-associate with the cytoplasm. While the content and function of these vacuoles are yet to be determined, indirect evidence indicates that they are pinocytic in character since the content of an invagination is confined to the sac upon its detachment from the plasma membrane and is subsequently transported throughout the cell by cyclosis.  相似文献   

2.
F. D. Sack  A. C. Leopold 《Planta》1985,164(1):56-62
Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.  相似文献   

3.
Our analysis of known data reveals that translocations of passively movable cellular organelles from tiny granules up to large cell nuclei can be ascribed to transport by streaming cytoplasm. The various behaviours, such as velocity changes during more or less interrupted movements, forth and back shuttling and particle rotation result from different types of plasma circulation. Fast movements over long distances, as observed in the large characean internodial cells occur in strong streams generated by myosin in bundles of actin filaments in the direction of the barbed filament ends. Slow movements with frequent reversions of the direction are typical for neuronal axons, in which an anterograde plasma flow, produced in a thin layer of membrane-attached actin filaments, is compensated by a retrograde stream, produced by dynein activity in the central bundle of microtubules. Here particle rotation is due to steep flow velocity gradients, and frequent changes of particle movements result from minor particle displacements in radial directions. Similar shuttling of pigment granules in the lobes of epidermal chromatophores results from the same mechanism, whereby the centrifugal movement along astral microtubules is due to flow generated by excess of kinesin activity and the centripetal movement to the plasma recycling through the intermicrotubular space. If the streaming pattern is reversed by switching to excess dynein activity, the moving granules are trapped in the high microtubule density at the aster center. The presence of larger bodies in asters disturbs the regular, kinesin-dependent microtubule distribution in such a way that a superimposed centrifugal plasma flow develops in the microtubule-dense layer along them, which is recycled in the microtubule-free space, created by their presence. Consequently, at excess kinesin activity, nuclei, mitochondria as well as chromosome fragments move towards the aster center until they reach a dynamically stabilized position that depends on the local microtubule density. These various behaviours are not rationally explainable by models based on a mechanical stepping along microtubules or actin filaments.  相似文献   

4.
Summary The cytoarchitecture and the pattern of cytoplasmic streaming change during the development of root hairs ofMedicago truncatula and after a challenge with nodulation (Nod) factors. We measured the speed and orientation of movement of 1–2 μm long organelles. The speed of organelle movement in cytoplasmic strands in the basal part of growing root hairs is 8–14 μm/s and is of the circulation type like in trichoblasts, bulges before tip-growth initiation, and full-grown hairs. In the subapical area of growing hairs, reverse-fountain streaming occurs discontinuously at a slower net speed. The reason for the slower speed is the fact that organelles often stop and jump. Reverse-fountain streaming is a pattern in which the main direction of organelle transport reverses 180 degrees before the cell tip is reached. Within minutes after their application to roots,Rhizobium leguminosarum-derived Nod factors, cause an increase and divergence in the subapical cytoplasmic strands. This phenomenon can best be observed in the growth-terminating hairs, since in hairs of this developmental stage, subapical cytoplasmic strands are transvacuolar. First, the tips of these hairs swell. The organelle movement in the swelling tip increases up to the level normal for circulation streaming, and the number of strands with moving organelles increases. When a new polar outgrowth emerges, reverse-fountain streaming is set up again, with all its characteristics like those seen in growing hairs. This outgrowth may obtain a new full root hair length, by which these hairs may become twice as long as nonchallenged hairs. Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

5.
The highly vigrous subprotoplasts were prepared from the germinated pollen of Lilium. As the protoplasm mass contracted, many cytoplasmic fibrils with free-ends which moved like animal sperm tails appeared at the surface of the mass. The winding movement of the fibril could tow the free-end's cytoplasm mass, but did not affect the particles moving along the fibril. Only when the fibril free-end adhered to the inner side of the cell membrane, could the, particle movement along the fibril occur, with the disappearance of the fibril’s winding movement. In vitro, the fibril contraction could make both cytoplasmic particles and subprotoplast move in unidirection, and the fibrils could specifically bind fluorescent beads coated with rabbit myosin. This indicates that the fibrils were composed of F-actin. We think that the cytoplasmic streaming may be based on the contraction of F-actin which must adhere to some points of the inner side of the cell membrane, and the contraction of F-actin drives the membrane-bound organells to move, at the same time, propels the sol cytoplasm thus forming the cytoplasmic streaming observed by light microscopy.  相似文献   

6.
J. Sikora 《Protoplasma》1981,109(1-2):57-77
Summary Certain species ofParamecium demonstrate rotational cytoplasmic streaming, in which most cytoplasmic particles and organelles flow along permanent route, in a constant direction. By means of novel methods of immobilization, observation and recording, some dynamic properties of cytoplasmic streaming have been described. It was found that the velocity profiles of coaxial layers of cytoplasm have a (parabolic) paraboidal shape and the mean output of cytoplasm flow in different examined zones of streaming is constant. As the consequence of randomly distributed elementary propulsion units within the cytoplasm, particles, which serve as markers of movement, exhibit movements of a saltatory nature; this form of movement is seen inParamecium streaming only in cases of error due to polarization of the saltating particles. Interaction of actin filaments and myosin is likely to occur under specific conditions in microcompartments of cytoplasm where local solations are generated eventually leading to contractions which might propagate on gelated neighbouring areas. Places of elementary contractions are scattered. Therefore the motile effect appears as streaming. Rotational cytoplasmic streaming inParamecium may serve as a convenient model for the study of the dynamics and function of cytoplasmic motility.  相似文献   

7.
AtT20 (clone D16V) cells develop long neurite-like processes in the growth cones of which secretory granules containing ACTH accumulate. These secretory granules have an acidic pH. Using acridine orange as a vital stain for acidic organelles, in combination with video-enhanced fluorescence microscopy, and subsequent immunolabeling with rabbit antibodies against ACTH, we have shown that these secretory granules move by saltations along the processes. During saltations velocities of 3 to 5 microns/s are achieved. The majority of the secretory granules move in the anterograde direction but some move retrogradely. The growth cones and processes are the site of extensive endocytosis. Using Lucifer Yellow as a vital stain we have shown that most endosomes move by saltations retrogradely. Movement of both secretory granules and endosomes is dependent upon microtubules. Individual secretory granules or endosomes never reverse the direction of their movement as they traverse the processes. Neutralization of the lumen of these acidic organelles with NH4Cl does not inhibit their movement or change its direction.  相似文献   

8.
A Translocation Hypothesis based on the Structure of Plant Cytoplasm   总被引:3,自引:0,他引:3  
Two types of linear structures have been seen in plant cytoplasm,largely by phase-contrast microscopy. Microscopic fine threads,o.Iµ to Iµ in diameter, were revealed in hair cells,where they formed endoplasmic systems along streaming pathwaysin the parietal cytoplasm and in transvacuolar strands. Duringcirculation streaming, small plastids and mitochondria-likeparticles were observed moving along the fine threads. Similarfine threads, together with small plastids and mitochondria-likeparticles occurred in phloem exudate and transcellular microscopicstrands. The transcellular strands, Iµ to 7µ indiameter, were seen in sieve-tube elements, phloem parenchyma,border parenchyma, and cortical cells. The movement of small plastids across end walls in border-parenchymacells, the appearance of the same structures within strandsin phloem cells, and the undiminished occurrence of small plastidsin successive drops of phloem exudate are collectively takenas evidence for their participation in translocation. Particlemovement is thought to occur through transcellular strands inassociation with fine threads, and to be motivated by a transcellularform of protoplasmic streaming.  相似文献   

9.
Cytoplasmic streaming in characean algae is thought to be driven by interaction between stationary subcortical actin bundles and motile endoplasmic myosin. Implicit in this mechanism is a requirement for some form of coupling to transfer motive force from the moving myosin to the endoplasm. Three models of viscous coupling between myosin and endoplasm are presented here, and the hydrodynamic feasibility of each model is analyzed. The results show that individual myosinlike molecules moving along the actin bundles at reasonable velocities cannot exert enough viscous pull on the endoplasm to account for the observed streaming. Attachment of myosin to small spherical organelles improves viscous coupling to the endoplasm, but results for this model show that streaming can be generated only if the myosin-spheres move along the actin bundles in a virtual solid line at about twice the streaming velocity. In the third model, myosin is incorporated into a fibrous or membranous network or gel extending into the endoplasm. This network is pulled forward as the attached myosin slides along the actin bundles. Using network dimensions estimated from published micrographs of characean endoplasm, the results show that this system can easily generate the observed cytoplasmic streaming.  相似文献   

10.
Electron microscopy of directly frozen giant cells of characean algae shows a continuous, tridimensional network of anastomosing tubes and cisternae of rough endoplasmic reticulum which pervade the streaming region of their cytoplasm. Portions of this endoplasmic reticulum contact the parallel bundles of actin filaments at the interface with the stationary cortical cytoplasm. Mitochondria, glycosomes, and other small cytoplasmic organelles enmeshed in the endoplasmic reticulum network display Brownian motion while streaming. The binding and sliding of endoplasmic reticulum membranes along actin cables can also be directly visualized after the cytoplasm of these cells is dissociated in a buffer containing ATP. The shear forces produced at the interface with the dissociated actin cables move large aggregates of endoplasmic reticulum and other organelles. The combination of fast-freezing electron microscopy and video microscopy of living cells and dissociated cytoplasm demonstrates that the cytoplasmic streaming depends on endoplasmic reticulum membranes sliding along the stationary actin cables. Thus, the continuous network of endoplasmic reticulum provides a means of exerting motive forces on cytoplasm deep inside the cell distant from the cortical actin cables where the motive force is generated.  相似文献   

11.
In many types of plant cell, bundles of actin filaments (AFs) are generally involved in cytoplasmic streaming and the organization of transvacuolar strands. Actin cross-linking proteins are believed to arrange AFs into the bundles. In root hair cells of Hydrocharis dubia (Blume) Baker, a 135-kDa polypeptide cross-reacted with an antiserum against a 135-kDa actin-bundling protein (135-ABP), a villin homologue, isolated from lily pollen tubes. Immunofluorescence microscopy revealed that the 135-kDa polypeptide co-localized with AF bundles in the transvacuolar strand and in the sub-cortical region of the cells. Microinjection of antiserum against 135-ABP into living root hair cells induced the disappearance of the transvacuolar strand. Concomitantly, thick AF bundles in the transvacuolar strand dispersed into thin bundles. In the root hair cells, AFs showed uniform polarity in the bundles, which is consistent with the in-vitro activity of 135-ABP. These results suggest that villin is a factor responsible for bundling AFs in root hair cells as well as in pollen tubes, and that it plays a key role in determining the direction of cytoplasmic streaming in these cells. Received: 16 September 1999 / Accepted: 3 December 1999  相似文献   

12.
Summary Effects of cytochalasin B and mycalolide-B on cytoplasmic streaming, organizations of actin filaments and the transvacuolar strand were studied in root hair cells ofHydrocharis, which shows reverse fountain streaming. Both toxins inhibited cytoplasmic streaming and destroyed the organizations of actin filaments and transvacuolar strands. However, we found a great difference between these toxins with respect to reversibility. The effects of cytochalasin B were reversible but not those of mycalolide B. The present results suggest that actin filaments work as a track of cytoplasmic streaming and as a cytoskeleton to maintain the transvacuolar strand. The usefulness of root hair cells ofHydrocharis in studying the dynamic organization of actin filaments of plant is discussed.Abbreviations CB cytochalasin B - DMSO dimethylsulfoxide - ML-B mycalolide B  相似文献   

13.
14.
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethylmaleimide or heat treatment. These results strongly indicate that cytoplasmic streaming in pollen tubes is supported by the "actomyosin"-ATP system. The velocity of organelle movement along characean actin bundles was much higher than that of the native streaming in pollen tubes. We suggested that pollen tube "myosin" has a capacity to move at a velocity of the same order of magnitude as that of characean myosin. Moreover, the motility was high at Ca2+ concentrations lower than 0.18 microM (pCa 6.8) but was inhibited at concentration higher than 4.5 microM (pCa 5.4). In conclusion, cytoplasmic streaming in pollen tubes is suggested to be regulated by Ca2+ through "myosin" inactivation.  相似文献   

15.
《The Journal of cell biology》1983,97(6):1668-1676
Lamellipodia have been induced to form within the reticulopodial networks of Allogromia laticollaris by being plated on positively charged substrata. Video-enhanced, polarized light, and differential interference contrast microscopy have demonstrated the presence of positively birefringent fibrils within these lamellipodia. The fibrils correspond to the microtubules and bundles of microtubules observed in whole-mount transmission electron micrographs of lamellipodia. Microtubular fibrils exhibit two types of movements within the lamellipodia: lateral and axial translocations. Lateral movements are often accompanied by reversible lateral associations between adjacent fibrils within a lamellipodium. This lateral association-dissociation of adjacent fibrils has been termed 'zipping' and 'unzipping'. Axial translocations are bidirectional. The axial movements of the microtubular fibrils can result in the extension of filopodia by pushing against the plasma membrane of the lamellipodia. Shortening, or complete withdrawal, of such filopodia is accomplished by the reversal of the direction of the axial movement. The bidirectional streaming characteristic of the reticulopodial networks also occurs within the lamellipodia. In these flattened regions the streaming is clearly seen to occur exclusively in association with the intracellular fibrils. Transport of both organelles and bulk hyaline cytoplasm occurs bidirectionally along the fibrils.  相似文献   

16.
The movement of organelles in the germinated pollen of Oenothera odorata was studied in detail by video microscopy. The image of the organelle movement was processed by computergation. The pollen grain of Oenothera odorata is large and easy to germinate in vitro and is suitable for the study of organelle movement . The motion of organelles in the germinated pollen grains and pollen tubes is very vigorous. But the movement of organelles in the pollen tubes is more vigorous than that in the germinating pollen grains. Some of their motion is saltatory. A kind of fibrils was observed in the germinated pollen grains. They are supposed to be made up of actin filaments. Some of the fibrils have one end connected to the plasma membrane and others have both ends linked to the plasma membrane , forming a network. Organelles move along the fibrils continuosely and the speed changes constantly . The speed of movement of organelles is not related to their dimensions. Cytochalasin B can inhibit the movement of organelles. Our results suggest that the movement of organelles is independent of the cytoplasmic streaming in the germinated pollen grains and pollen tubes.  相似文献   

17.
The vacuolar apparatus of various plant cells consists of two distinct features: the large central vacuole and peripheral vacuoles which are derived from invaginations of the plasma membrane. Peripheral vacuoles are conspicuous structures in both living and fixed hair or filament cells of Tradescantia virginiana. They occur as spherical structures along the inner boundary of the peripheral cytoplasm and can be recognized as projections into the central vacuole. These structures are variable in size and number within a cell and can represent a significant proportion of the volume of the vacuole. Peripheral vacuoles most frequently are observed in motion with the streaming cytoplasm although their velocity is usually somewhat slower that that of the cytoplasmic organelles. Ultrastructural studies show two closely approximated membranes, one for each vacuole, in areas where a peripheral vacuole projects into the central vacuole. These are separated by an intermembrane zone continuous with the peripheral cytoplasm. The movement of organelles over the perimeter of the peripheral vacuole is presumed to occur along this intermembrane zone. The internal area of the peripheral vacuoles may appear empty although some contain a vesicular content of unknown origin and function.  相似文献   

18.
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.  相似文献   

19.
Dynein and kinesin have been implicated as the molecular motors that are responsible for the fast transport of axonal membranous organelles and vesicles. Experiments performed in vitro with partially reconstituted preparations have led to the hypothesis that kinesin moves organelles in the anterograde direction and dynein moves them in the retrograde direction. However, the molecular basis of transport directionality remains unclear. In the experiments described here, carboxylated fluorescent beads were injected into living Mauthner axons of lamprey and the beads were observed to move in both the anterograde and retrograde directions. The bead movement in both directions required intact microtubules, occurred at velocities approaching organelle fast transport in vivo, and was inhibited by vanadate at concentrations that inhibit organelle fast transport. When living axons were injected with micromolar concentrations of vanadate and irradiated at 365 nm prior to bead injections, a treatment that results in the V1 photolysis of dynein, the retrograde movement of the beads was specifically abolished. Neither the ultraviolet irradiation alone nor the vanadate alone produced the retrograde-specific inhibition. These results support the hypothesis that dynein is required for retrograde, but not anterograde, transport in vivo. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Here we examine peroxisomes in living plant cells using transgenic Arabidopsis thaliana plants expressing the green fluorescent protein (GFP) fused to the peroxisome targeting signal 1 (PTS1). Using time-lapse laser scanning confocal microscopy we find that plant peroxisomes exhibit fast directional movement with peak velocities approaching 10 microm s(-1). Unlike mammalian peroxisomes which move on microtubules, plant peroxisome movement is dependent on actin microfilaments and myosin motors, since it is blocked by treatment with latrunculin B and butanedione monoxime, respectively. In contrast, microtubule-disrupting drugs have no effect on peroxisome streaming. Peroxisomes were further shown to associate with the actin cytoskeleton by the simultaneous visualization of actin filaments and peroxisomes in living cells using GFP-talin and GFP-PTS1 fusion proteins, respectively. In addition, peroxisome budding was observed, suggesting a possible mechanism of plant peroxisome proliferation. The strong signal associated with the GFP-PTS1 marker also allowed us to survey cytoplasmic streaming in different cell types. Peroxisome movement is most intense in elongated cells and those involved in long distance transport, suggesting that higher plants use cytoplasmic streaming to help transport vesicles and organelles over long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号