首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

2.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

3.
The glandular secretory system in Cannabis sativa L. (marihuana) consists of three types of capitate glandular hairs (termed bulbous, capitate-sessile, and capitate-stalked) distinguishable by their morphology, development, and physiology. These gland types occur together in greatest abundance and developmental complexity on the abaxial surface of bracts which ensheath the developing ovary. Bulbous and capitate-sessile glands are initiated on very young bract primordia and attain maturity during early stages of bract growth. Capitate-stalked glands are initiated later in bract growth and undergo development and maturation on medium, to full sized bracts. Glands are epidermal in origin and derived, with one exception, from a single epidermal initial. The capitate-stalked gland is the exception and is of special interest because it possesses a multicellular stalk secondarily derived from surrounding epidermal and subepidermal cells. Glands differentiate early in development into an upper secretory portion and a subtending auxiliary portion. The secretory portion, depending on gland type, may range from a few cells to a large, flattened multicellular disc of secretory cells. The secretory portion produces a membrane-bound resinous product which caps the secretory cells. Capitate-stalked glands are considered to be of particular evolutionary significance because they may represent a gland type secondarily derived from existing capitate-sessile glands.  相似文献   

4.
Three distinct types of glandular hairs of increasing morphological complexity which occur on flowering tops of Cannabis sativa L. (marihuana) are described from scanning electron microscopy. These gland types—termed bulbous, capitate-sessile, and capitate-stalked, described from pistillate plants—occur in greatest abundance on the outer surface of bracts ensheathing the ovary. Bulbous and capitate-sessile glands, which arise at an early stage in bract development, are scattered over the bract surface. Mature bulbous glands have a small swollen head on a short stalk, whereas capitate-sessile glands have a large globular head attached directly to the bract surface. Because of their numbers and large size, capitate-sessile glands are the most conspicuous gland type during the early phase of bract development. Capitate-stalked glands, which have a large globular head on a tall, multicellular stalk, differentiate during subsequent bract development. These stalked glands arise first along the bracteal veins and then over the entire bract surface. A voluminous, fluid secretory product accumulates in the glandular head of all three types. These glands are believed to be a primary site of localization of the marihuana hallucinogen, tetrahydrocannabinol.  相似文献   

5.
Delta 9-tetrahydrocannabinol (THC) localization in glandular trichomes and bracteal tissues of Cannabis, prepared by high pressure cryofixation-cryosubstitution, was examined with a monoclonal antibody-colloidal gold probe by electron microscopy (EM). The antibody detected THC in the outer wall of disc cells during the presecretory cavity phase of gland development. Upon formation of the secretory cavity, the immunolabel detected THC in the disc cell wall facing the cavity as well as the subcuticular wall and cuticle throughout development of the secretory cavity. THC was detected in the fibrillar matrix associated with the disc cell and with this matrix in the secretory cavity. The antibody identified THC on the surface of secretory vesicles, but not in the secretory vesicles. Gold label also was localized in the anticlinal walls between adjacent disc cells and in the wall of dermal and mesophyll cells of the bract. Grains were absent or detected only occasionally in the cytoplasm of disc or other cells of the bract. No THC was detected in controls. These results indicate THC to be a natural product secreted particularly from disc cells and accumulated in the cell wall, the fibrillar matrix and surface feature of vesicles in the secretory cavity, the subcuticular wall, and the cuticle of glandular trichomes. THC, among other chemicals, accumulated in the cuticle may serve as a plant recognition signal to other organisms in the environment.  相似文献   

6.
Electron microscopy confirms previous light microscope observations that tobacco leaf trichomes are glandular and that there are two different types. Both the tall trichome (multicellular stalk, unicellular or multicellular head) and the short trichome (unicellular stalk; multicellular head) exhibit characteristics common to gland cells—a dense cytoplasm, numerous mitochondria, and little vacuolation. The tall trichome contains structurally well developed chloroplasts and an elaborate network of endoplasmic reticulum. The short trichome contains undifferentiated plastids and endoplasmic reticulum which parallels the nucleus and plasmalemma. Few dictyosomes are seen either in the short trichome or in the tall trichome. The short trichome appears to undergo structural changes concurrently with the appearance of secretory product within the cells. The most noticeable change is the formation of the extraplasmic space between the cell wall and the plasmalemma. Electron dense secretory product is observed between the plasmalemma and the cell wall and within the intercellular spaces.  相似文献   

7.
Development of the secretory cavity and formation of the subcuticular wall of glandular trichomes in Cannabis sativa L. was examined by transmission electron microscopy. The secretory cavity originated at the wall-cuticle interface in the peripheral wall of the discoid secretory cells. During the presecretory phase in development of the glandular trichome, the peripheral wall of the disc cells became laminated into a dense inner zone adjacent to the plasma membrane and a less dense outer zone subjacent to the cuticle. Loosening of wall matrix in the outer zone initiated a secretory cavity among fibrous wall materials. Membrane-bound hyaline areas, compressed in shape, arose in the wall matrix. They appeared first in the outer and subsequently in the inner zone of the wall. The membrane of the vesicles, and associated dense particles attached to the membrane, arose from the wall matrix. Hyaline areas, often with a conspicuous electron-dense content, were released into the secretory cavity where they formed rounded secretory vesicles. Fibrous wall material released from the surface of the disc cells became distributed throughout the secretory cavity among the numerous secretory vesicles. This wall material was incorporated into the developing subcuticular wall that increased five-fold in thickness during enlargement of the secretory cavity. The presence of a subcuticular wall in the cavity of Cannabis trichomes, as contrasted to the absence of this wall in described trichomes of other plants, supports a polyphyletic interpretation of the evolution of the secretory cavity in glandular trichomes among angiosperms.  相似文献   

8.
The disc cell wall facing the secretory cavity in lipophilic glands of Cannabis was studied for origin and distribution of hyaline areas, secretory vesicles, fibrillar matrix and particulate material. Secretions evident as light areas in the disc cell cytoplasm pass through modified regions in the plasma membrane and appear as hyaline areas in the cell wall. Hyaline areas, surrounded with a filamentous outline, accumulate near the wall surface facing the secretory cavity where they fuse to form enlarged hyaline areas. Fibrillar matrix is related to and may originate from the dense outer layer of the plasma membrane. This matrix becomes distributed throughout the wall material and contributes in part to the composition of the surface feature of secretory vesicles. Thickening of the cell wall is associated with secretions from the disc cells that facilitates movement of hyaline areas, fibrillar matrix and other possible secretions through the wall to form secretory vesicles and intervesicular materials in the secretory cavity. The outer wall of disc cells in aggregate forms the basilar wall surface of the secretory cavity which facilitates the organization of secretory vesicles that fill the secretory cavity.  相似文献   

9.
Glandular trichomes in the leaf lamina of Rosmarinus officinalis L. were examined by scanning and transmission electron microscopy. The leaves were characterized by an abundance of two types of glandular trichomes—small capitate and large peltate glandular trichomes. In addition to the glandular trichomes, numerous non-glandular trichomes were present on the abaxial surface of the leaf. These trichomes mainly predominated on the midrib, whereas glandular trichomes occurred on non-vein areas. At the initial phase of secretory cavity formation, hyaline areas were abundant in periclinal walls of head cells, while they were not observed in the anticlinal walls. The hyaline areas gradually increased in size, fusing with other areas throughout the wall. Loose wall material adjacent to hyaline areas was released from the head cell walls and migrated into the secretory cavities. As the secretory cavities continued to enlarge, the new vesicles emerging into the secretory cavities from the walls of head cells became surrounded with the surface of a typical membrane. They developed a round shape, but the contours of the vesicle surfaces appeared polygonal when tightly packed inside a cavity. These vesicles varied in size; small vesicles often possessed electron-dense contents, while large vesicles contained electron-light contents.  相似文献   

10.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

11.
Development of peltate glandular trichomes of peppermint   总被引:1,自引:0,他引:1  
Cryofixation and conventional chemical fixation methods were employed to examine the ultrastructure of developing peltate glandular trichomes of peppermint (Mentha x piperita). Our results are discussed in relation to monoterpene production and the mechanism of essential oil secretion. Peltate glands arise as epidermal protuberances (initials) that divide asymmetrically to produce a vacuolate basal cell, a stalk cell, and a cytoplasmically dense apical cell. Further divisions of the apical cell produce a peltate trichome with one basal cell, one stalk cell, and eight glandular (secretory) disc cells. Presecretory gland cells resemble meristematic cells because they contain proplastids, small vacuoles, and large nuclei. The secretory phase coincides with the separation and filling of the sub-cuticular oil storage space, the maturation of glandular disc cell leucoplasts in which monoterpene biosynthesis is known to be initiated, and the formation of extensive smooth endoplasmic reticulum at which hydroxylation steps of the monoterpene biosynthetic pathway occur. The smooth endoplasmic reticulum of the secretory cells appears to form associations with both the leucoplasts and the plasma membrane bordering the sub-cuticular oil storage cavity, often contains densely staining material, and may be involved with the transport of the monoterpene-rich secretion product. Associated changes in the ultrastructure of the secretory stage stalk cell are also described, as is the ultrastructure of the fragile post-secretory gland for which cryofixation methods are particularly well suited for the preservation of organizational integrity.  相似文献   

12.
薄荷头状腺毛分泌过程的超微结构研究   总被引:6,自引:0,他引:6  
闫先喜  胡正海 《生命科学研究》1998,2(4):295-300,304
电镜观察表明,刚形成的薄荷头状腺毛的头部细胞,细胞核较大细胞质浓,有一些小液泡,质体和线粒体最显著,分泌前期,内质网及高尔基体数量明显  相似文献   

13.
BACKGROUND AND AIMS: Nectar production in the Bignoniaceae species lacking a nectariferous functional disc is ascribed to trichomatic glands around the ovary base and/or on the inner corolla wall. Nevertheless, knowledge about the secretion and function of these glands is very incomplete. The purpose of this paper is to study, from a developmental viewpoint, the ultrastructure, histochemistry and secretory process of the peltate trichomes on the ovary of Zeyheria montana, a species in the Bignoniaceae which has a rudimentary disc. METHODS: Samples of the gynoecium at various developmental stages were fixed and processed for light and electron microscopy. Histochemistry and cytochemistry tests were performed to examine the chemical composition of exudates. Thin layer chromatography was used to determine the presence of alkaloids and terpenes in gynoecium and fruit extracts, and in fresh nectar stored in the nectar chamber. KEY RESULTS: Peltate trichomes at different developmental stages appear side by side from floral budding up to pre-dispersal fruit. Large plastids with an extensive internal membrane system consisting of tubules filled with lipophilic material, abundant smooth endoplasmic reticulum, few Golgi bodies, lipophilic deposits in the smooth endoplasmic reticulum and mitochondria, and scattered cytoplasmic oil droplets are the main characteristics of mature head cells. The secretion which accumulates in the subcuticular space stains positively for hydrophilic and lipophilic substances, with lipids prevailing for fully peltate trichomes. Histochemistry and thin layer chromatography detected terpenes and alkaloids. Fehling's test to detect of sugars in the secretion was negative. CONCLUSIONS: The continuous presence and activity of peltate trichomes on the ovary of Z. montana from early budding through to flowering and fruiting set, and its main chemical components, alkaloids and terpenes, suggest that they serve a protective function and are not related to the floral nectar source or to improving nectar quality.  相似文献   

14.
LYSHEDE  OLE B. 《Annals of botany》1980,46(5):519-526
The potato plant has two types of glandular trichomes whichwere investigated by electron microscopy. One type has a eight celled globular head on a neck cell anda stalk cell Each glandular cell has many rather large vacuoles,a large nucleus, many ribosomes and mitochondria, a few Golgibodies, and darkly coloured, often irregular plastids (chloroplasts).The plastids are mostly located near the axial cell wall borderinga large central intercellular space filled with secretion materialThe plastids are assumed to participate in the formation ofthe secretion material, which reacts positively to esterasetests. The outer wall is covered by a thin cuticle. The other type has a club-shaped multicellular head on a singlestalk cell. The cytoplasmic features in the cells are similarto those of the globular-headed trichome, except that they possesslarge central vacuoles and randomly distributed plastids. Centricendoplasmic reticulum has been observed in young cells. Intercellularspaces develop between the cells and into the outer wall, whichis thus split into two. Whereas the older glandular cells reactpositively to tests for esterase, the secretion material itselfis pectinaceous and reacts negatively. The outer wall is cutinizedand covered by a cuticle. Solanum tuberosum L., potato, glandular trichomes, ultrastructure  相似文献   

15.
Summary The cement gland apparatus of newly hatched Pterophyllum scalare Cuv. & Val. was examined by histology, scanning and transmission electron microscopy. The whole organ is composed of three pairs of endoepithelial, ductless glands, which cause prominent elevations on the larval head and are found in a specific arrangement. Each single gland is represented by an aggregation of elongated, tubular secretory cells surrounding a pyriform acinus. It overlies a basal lamina and is covered by the outer layer of the bilaminar embryonic epidermis.Two different types of secretory cells can be distinguished. One type is restricted to the bottom of the cavity. It is characterized by multiform cytoplasmic protrusions, which project into the gland's cavity. The secretory granules contain a network of light filamentous material. The second type constitutes the side wall of the acinus. It does not develop any protrusions. The contents of the secretory granules is of very high and homogeneous electron density. The mechanism of extrusion is discussed for both cell types. All secretory cells show a strong PAS-reaction. In SEM a circular microridge pattern with attached mucus globules can be recognized on the larval epithelial surface.Dedicated to Prof. Dr. H. Leonhardt on the occasion of his 60th birthday  相似文献   

16.
Summary Oil glands ofCitrus deliciosa are multicellular secretory structures, globular to oval in shape, in the centre of which an essential oil-accumulating space is formed. Opening of this space begins from a single cell. It undergoes lysis which later extends to the neighbouring gland cells.Secretory material in form of droplets is produced in plastids, from where it is transported to the parietal cytoplasm of the secretory cells via numerous ER-elements. After fusion of the ER-membranes with the plasmalemma, the exudate reaches the apoplast, through which it is driven to the central cavity of the gland.Peripheral cells of the secretory complex are modified into a protective sheath with thick walls and large vacuoles, while their plastids are differentiated from leucoplasts into typical amyloplasts.  相似文献   

17.
白花罗勒成熟的盾状腺毛头部细胞中 ,质体含量丰富 ,体积较大 ,其中有大量的嗜锇物质积累 ;在分泌过程中 ,分泌细胞出现质壁分离现象 ;嗜锇物质向外分泌的途径有两条 :一条是以胞吐的方式 ,另一条是以渗透的方式  相似文献   

18.
Light and scanning electron microscopical investigations were carried out to study distribution, morphology and secretion of glandular trichomes during leaf development in Tamus communis . During leaf growth glandular trichomes arise continously from single protodermal cells. At maturity, they are composed of a 6-celled gland head, a secretory neck cell, an "endodermal" cell, and one basal or reservoir cell. During the early stage of secretion, several regularly arranged crater-like pores differentiate on the cuticular surface of the gland head. Through these pores (1–1.5 μm in diameter), the secretion flows out as a thin film or as rods (0.4 μm in diameter) spreading on the trichomes and on the leaf surface. Histochemical tests indicate that the secretion is composed of a small amount of carbohydrates and an abundant fraction of lipophilic material. Proceeding towards senescence, the wall degeneration of the gland head gives rise to a strong histochemical reaction for insoluble polysaccharides. The results presented are compared with those of other investigations on the pattern of secretion in glandular trichomes.  相似文献   

19.
蝇子草茎叶上着生粘液毛,它是由3个细胞构成的单列腺毛。电镜观察表明,在刚形成的腺毛柄细胞中,质体最发达,而且大多数质体内含有淀粉粒。在柄细胞中,有些质体和液泡膜融合产生小泡,可能以胞饮方式将质体内的淀粉粒降解后的产物转以液泡内。有些质体则可能直接突入液泡并在液泡内降解其淀粉粒。在头细胞发育中,含淀粉粒的质体增多。后期大多数质体消失,同时出现了大量的充满纤丝状物质的小不包和大泡。最后,小泡和大泡相琵  相似文献   

20.
The paper deals with the development of the salivary gland system in Melipona quadrifasciata anthidioides, which begins in the prepupal stage. The silk glands degenerate by autolysis at the end of the larval stage. Degeneration is characterized by cytoplasmic vacuolization and pycnosis of the nuclei of the secretory cells. The glandular secretory portion of degenerated silk glands separates from the excretory ducts. The salivary glands develop from the duct of the larval silk glands. The thoracic salivary glands develop from the ducts of the secretory tubules and the head salivary glands from the terminal excretory duct. The mandibular glands appear in the prepupa as invaginations of mandibular segments, and their differentiation to attain the adult configuration occurs during pupation. The hypopharyngeal glands have their origin from evaginations of the ventral anterior portion of the pharynx. A long tubule first appears with walls formed by more than one cellular layer. Then some cells separate from the lumen of the duct, staying attached to it by a cuticular channel in part intracellular. The initial duct constitutes the axial duct, in which the channel of the secretory cells opens. During the development of salivary and mandibular glands, they recapitulate primitive stages of the phylogeny of the bees. During the development of salivary glands system, mitosis accounts for only part of the growth. Most of the growth occurs by increase in size of cells rather than by cell division. In brown-eyed and pigmented pupae six days before emergence, the salivary gland system is completely developed, although not yet functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号