首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of zonation in the shoot apical meristems of 28 species of cacti was examined. At germination the embryonic apex may have one of three types of organization: 1) tunica/corpus; 2) tunica/central mother cells/corpus; 3) tunica/central mother cells/peripheral zone/pith-rib meristem. Apices of the third type have complete zonation and undergo little or no further structural development. Both of the other types develop the missing zones. First, the apices become mitotically active, and peripheral zone characters develop in the outer corpus. Simultaneously, or slightly later, the central mother cells differentiate if they are not yet present. The final step is the formation of the pith-rib meristem. The sequence of appearance of the zones was constant throughout all species examined, but the time of appearance of only one zone could be correlated with any other morphogenetic process: the development of peripheral zone characteristics in the outer corpus occurs with or before the beginning of leaf production. The development of zonation appears to be independent of apical size, shape, or age, either real age or plastochron age. This has been interpreted to indicate that the metabolic mechanism controlling the development of zonation in shoot apical meristems is largely autonomous and independent of other aspects of morphogenesis occurring in the seedling. Also, the fact that leaf initiation and shoot axis production can both occur before the development of either the central mother cells or the pith-rib meristem indicates that neither of these zones is essential for these two apical morphogenetic activities.  相似文献   

2.
Shoot apical meristems of jack pine (Pinus banksiana) were examined by light and electron microscopy. Cytohistological zonation was evident when meristems were fixed in Craf IV, embedded in paraffin, and stained with Chlorazol Black E. When meristems were fixed for electron microscopy the cytoplasm of the apical initials and central mother cells each contained numerous lipid bodies and their nuclei contained little, if any, heterochromatin. The cytoplasm of the peripheral zone was rich in ribosomes. The nuclei of the peripheral zone and rib meristem were heterochromatic. Thus, the lack of heterochromatin in the nuclei and the dissolution of lipids in the cytoplasm of the apical initials and central mother cells appeared to contribute most to the organization and appearance (cytohistological zonation) of the shoot apex when standard histological techniques are used.  相似文献   

3.
The sizes, shapes and zonations of the shoot apical meristems of 22 species of cacti were examined. This family was chosen because of its great diversity of habits; the more primitive members are nonsucculent. leafy trees and more advanced members are highly specialized “leaf-less” stem-succulents. By combining these measurements with those already in the literature, a sample of almost 70 species was obtained. Apical meristems range in size from only 80 μm in diam in some species to as much as 1.500 μm in diam in others. The shape ranges from being flat to almost hemispherical. Despite the great range in size and shape of the apical meristems, or the range in the morphologies of the leaves and stems which are produced by the meristems. all apices had the usual zonation: tunica, central mother cells, peripheral zone, and pith-rib meristem. The sizes of each of the zones. expressed either as the number of cells per zone or expressed as a percentage of the whole apex. were highly variable. The variation in apical dimensions and zone sizes occurred both phylogenetically and ontogenetically. and this has been interpreted to indicate that the morphogenetic mechanisms which control apical size and zonation are easily modified, both during the development of individual plants and during the evolution of new species.  相似文献   

4.
In Picea abies seedlings the distance below the base of the shoot apical dome to the first protoxylem (px) to be differentiated in the internodes beneath is a linear function of apical dome basal diameter. By using mathematical relations derived in earlier papers of this series, we computed the morphogenic age in plastochrons and the chronometric age in days of the internode in which px is first differentiated (npx). As the seedlings age from 30 to 140 days, the distance from the base of the apical dome to px increases from 186 to 295 μm, the n of npx increases from 16 to 53, but the chronometric age of npx remains within the range of 10 to 12 days. Protoxylem differentiation in young internodes is, therefore, more closely related to chronometrie age than it is to morphogenic age or to distance from the base of the shoot apical dome.  相似文献   

5.
The shoot apical meristems of adult Echinocereus engelmannii plants are zonate and have a tunica, central mother cells, a peripheral zone, and a pith-rib meristem. An ultrastructural, stereological study showed that each zone has its own distinct ultrastructure, but that the differences between the zones are quite small, both on a protoplasmic basis and on a cytoplasmic basis. Furthermore, the ultrastructure present in the adult apices differed only slightly from that which had been found in seedling apices, demonstrating a long-term stability of structure. The standard deviations found in the sample were small, indicating little variability from one plant to the next and suggesting that there are little or no cyclic changes during the plastochron or a 24-hr photoperiod. The ultrastructures found in the shoot apical meristems differed significantly and markedly from mature tissues of the same plants.  相似文献   

6.
Application of 1.5 μg indoleacetic acid (IAA) in a lanolin droplet to the exposed apical meristem of Lupinus albus seedlings caused: (1) axillary buds to form closer to the apex than normal, (2) displacement of primordia formed during the first two plastochrons following treatment, and (3) significant increases in concentration of RNA, protein, and unsaturated lipids in the meristems. Primordial displacement tended to be random relative to the site of the treatment, which may be a feature common to dicotyledonous plants exhibiting spiral phyllotaxis. That IAA conferred initiation site capabilities to all of the peripheral zone for a short time was indicated by (2) and (3) above, and by decreases in concentrations of the observed compounds toward control levels after the second plastochron following treatment. Effects of IAA on RNA suggest that nucleic acid metabolism, and possibly gene action, was involved in the response. Kinetin or gibberellic acid had no apparent morphogenetic effect on Lupinus meristems.  相似文献   

7.
We have extended our previous analyses of growth in shoot apices of Picea abies seedlings. Quantification of apical dome volume changes, more detailed analysis of the subapical caulis profile, and of the vertical distance from the base of the dome to the nth primordium, all as functions of age, revealed the dynamics of various growth variables. As seedlings age from 10 to 136 days, apical dome volume increases about 30-fold, plastochron duration declines from 31 h to about 5 h, height of primordial internodes declines from near 10 μm, to only 3.5 μm, and the caulis assumes a distinct neck-and-shoulder profile. Relative volume growth rates for the apical dome as a whole are about twice the base-of-dome values and decline from 36% to 21% per day as age increases to 136 days. Relative growth rates (radial, vertical, and volume) in the caulis change in a complex manner with both plant age and internode number. We also computed the total volume of tissue generated by an apical dome per day including that part invested in increased dome volume. The investment (ϕ) ratio is greater than 20% in the 10-day dome, but declines rapidly to become negative after 136 days. The ϕ ratio controls apical dome volume and hence augurs future growth yield.  相似文献   

8.
Excised shoot apical meristems of Picea abies seedlings grow and develop primordial leaves when cultured on Millipore (mixed esters of cellulose) filter membranes lying on a simple, defined medium gelled with agarose. When the cultures are removed from the membranes, each leaves a spot of altered light transmission, spectral characteristics, hygroscopicity, and chemical reactivity. These spots are the manifestation of deposition in the membrane pore space of polysaccharides, lignin-like components, and probably other substances. Deposition of water-insoluble, Schiff's reagent-positive substances can be detected in the filter membranes after only 3–6 hr exposure to a meristem and continues for 10–15 days or longer. Precursors of the insoluble deposition materials can diffuse through at least nine layers of Millipore membrane before deposition at a site remote from living cells. Placement of a dialysis membrane between the meristem and the Millipore membrane prevents detectable deposition in the latter. The observations are consistent with the hypothesis that apical meristems can synthesize and export mobile precursors of cell wall components as well as any substances necessary to promote their condensation or polymerization into insoluble materials at remote sites. The system may be useful in studying synthesis of cell wall components and investigating the functional role of growth regulators in shoot apical development.  相似文献   

9.
Vernalized seeds of Pinus lambertiana were scarified and planted in perlite. At 5, 8, 10, 13 and 16 days after planting, seedlings were selected for morphological examination and histochemical study. The shoot apical meristem consisted of a relatively homogeneous population of cells at 5 days. Cytohistological zonation was observed in the meristem by the eighth day and needle primordia initiation began at this time. Acid phosphatase (AP) activity was high in the extreme tip of the apex at 5 days. At 8 days AP activity was intense in the peripheral zone but weak in the apical initial and central mother cell zones. The apical meristem of the 10–16-day-old seedlings exhibited high AP activity in the peripheral zone only during the early stages of needle primordia initiation. The distribution of cytoplasmic and nuclear protein-bound SH was correlated with cytohistological zonation. Protein-bound SH was distributed relatively uniformly at 5 days, but by the eighth day the 4 cytohistological zones contained differential quantities. Succinic dehydrogenase (SD) activity was observed throughout the apex at 5 days, but by the eighth day the apical initial and central mother cell zones exhibited differentially greater levels of SD activity. Irradiation with 500 R of X-rays at 7 days after planting completely inhibited needle primordia initiation and disrupted the cytohistological zonation of the apex. Correlated with the inhibition of needle primordia initiation was the loss of SD activity in the apical initial and central mother cell zones. Irradiation also resulted in the gradual loss of protein-bound SH from the cytoplasm of the apical initial, central mother cell and peripheral zone.  相似文献   

10.
The duration of mitosis and the cell cycle were determined for defined cell populations of the shoot apical meristem of Ceratopteris thalictroides Brong. by using the colchicine-induced metaphase accumulation technique. The results indicate that the apical cell is mitotically active and cycles at an apparently greater frequency than the cells of subjacent populations. Duration of mitosis was similar for all cells of the meristem. These results are correlated with mitotic indices of control apices, the geometry of the apex, and the mean number of cells in the meristem. Shoot apices from adult plants were examined to determine mitotic indices within the meristem; mitotic activity was again noted for the apical cell. These results contradict recent proposals that the pteridophyte apical cell serves as a unicellular quiescent center which lacks histogenic potential and offer experimental support for the classical concept of apical cell function in those fern shoot meristems which terminate in a single apical cell.  相似文献   

11.
Shoot apical meristems of Echinocereus engelmannii have only a tunica-corpus organization at germination, but the corpus rapidly develops central mother cells, a peripheral zone and a pith-rib meristem. The manner in which nutrition, darkness and various growth regulators at several concentrations and in several combinations affect the development of zonation was examined by growing derooted seedlings on agar which contained the nutrients or growth regulators. Benzylaminopurine was able to elicit the formation of the pith-rib meristem in an otherwise non-zonate corpus. Also, the rate of leaf initiation was greatly increased. Gibberellic acid severely inhibited the formation of corpus zones but had little effect on leaf initiation. Indoleacetic acid had no effects other than mild inhibition of zonation and a slight retardation of leaf initiation. Abscisic acid was strongly inhibitory. Sucrose only slightly increased the rate of leaf formation and did not affect apex size or zonation. To more closely examine the cytokinin-induced effects on the apical meristem, several growth regulators were applied in combination with the most effective concentration of cytokinin. Certain combinations were able to interfere with several of the cytokinin-induced responses, while other cytokinin-induced responses occurred even in the presence of high concentrations of these other growth regulators. Leaf initiation and meristem morphogenesis appeared to be remarkably stable and insensitive to the presence of most hormones except cytokinin and gibberellin.  相似文献   

12.
Vegetative plants of Xanthium strumarium (a short-day species) were induced to flower by exposure to a single 16-hr long night. By cutting off the induced leaf (half-expanded leaf) at various times, it was established that, by 8 hr after the end of the long night, a sufficient amount of floral stimulus had reached the meristem to induce a flowering response. The following sequence of events occurred in both the peripheral and central zones of the apical meristem of induced plants: 1) a rise in the mitotic index beginning at 28 hr after the end of the long night and culminating at 36 and 56 hr; 2) a stimulation of DNA synthesis starting at 32–36 hr and reaching a maximum at 60 hr; 3) an increase in nucleolus diameter starting at 32 hr. The cell population in the meristems of both vegetative and induced plants displayed a similar distribution, with about 80 % of the nuclei with the 2C amount of DNA. The comparison of the kinetic data concerning the mitotic index and DNA synthesis indicated that one of the early effects of the floral stimulus in the peripheral and central zones was the release in mitosis of cells whose nuclei were in the postsynthetic (G2) phase of the mitotic cycle. In the pith-rib meristem, the following events were recorded: 1) a stimulation of DNA synthesis starting at 20 hr; 2) a rise of the mitotic index beginning at 28 hr; 3) the vacuolation and elongation of cells starting at 48 hr. All these events occurred well before the initiation of bract and flower primordia, which began at 96 and 136 hr, respectively. Neither stimulation of mitotic activity nor flowering occurred in the meristems of plants subjected to a long night interrupted at its midpoint by a 5-min light break. The results are discussed in relation to the early events which are known to occur in the meristems of other photoperiodic species in transition to flowering.  相似文献   

13.
Coleus blumei Benth. apical meristems and apical meristems +1, +2, +3 primordial leaf pairs were cultured to examine phytohormone influences on development and correlative effects of developing primordial leaves on in vitro responses. The meristem with no phytohormones or low levels of IAA could not develop in vitro. At least 0.1 mg/l IAA and optimumly 1-2 mg/l IAA were required for development into complete plants. IAA from 0.1 to 3 mg/l also resulted in root development with no apparent leaf or shoot formation. Levels of IAA higher than 3 mg/l were inhibitory to development. Kinetin, as a substitute for naturally occurring cytokinins, alone (0.0003 to 3 mg/l) resulted in development of rosettes of leaves. In the presence of IAA (***1 mg/l) and kinetin (0.003 mg/l) plants, rosettes, individual leaves with roots, and roots developed from isolated meristems. Glutamine and adenine sulfate both appeared inhibitory to meristem development. With +1, +2, +3 developing primordial leaf pairs left attached to the apical dome, three pairs were required for plant formation in the absence of phytohormones. In the presence of IAA, two pairs of primordial leaves resulted in plant formation; whereas, with IAA and low levels of kinetin one pair of primordial leaves was enough. Higher levels of kinetin were inhibitory to plant development with primordial leaves present. ABA appeared to be inhibitory to development of meristems and meristems +1, +3 primordial leaves at low concentrations and resulted in death at ***1 mg/l. Developing primordial leaves appear to supply the apical meristem with a balance of phytohormones during growth. Meristem development into a plant first involved formation of leaf primordia. Establishment of a bipolar axis with root formation followed.  相似文献   

14.
Regeneration of new shoots in plant tissue culture is often associated with appearance of abnormally shaped leaves. We used the adventitious shoot regeneration response induced by decapitation (removal of all preformed shoot apical meristems, leaving a single cotyledon) of greenhouse-grown cotyledon-stage seedlings to test the hypothesis that such abnormal leaf formation is a normal regeneration progression following wounding and is not conditioned by tissue culture. To understand why shoot regeneration starts with defective organogenesis, the regeneration response was characterized by morphology and scanning electron and light microscopy in decapitated cotyledon-stage Cucurbita pepo seedlings. Several leaf primordia were observed to regenerate prior to differentiation of a de novo shoot apical meristem from dividing cells on the wound surface. Early regenerating primordia have a greatly distorted structure with dramatically altered dorsoventrality. Aberrant leaf morphogenesis in C. pepo gradually disappears as leaves eventually originate from a de novo adventitious shoot apical meristem, recovering normal phyllotaxis. Similarly, following comparable decapitation of seedlings from a number of families (Chenopodiaceae, Compositae, Convolvulaceae, Cucurbitaceae, Cruciferae, Fabaceae, Malvaceae, Papaveraceae, and Solanaceae) of several dicotyledonous clades (Ranunculales, Caryophyllales, Asterids, and Rosids), stems are regenerated bearing abnormal leaves; the normal leaf shape is gradually recovered. Some of the transient leaf developmental defects observed are similar to responses to mutations in leaf shape or shoot apical meristem function. Many species temporarily express this leaf development pathway, which is manifest in exceptional circumstances such as during recovery from excision of all preformed shoot meristems of a seedling.  相似文献   

15.
Shoot apical meristems of Picea abies seedlings can be cultured on a relatively simple, defined, basal medium. Dome-like explants initially about 200 μ tall, without externally obvious primordia, and having dry weights of about 3 μg, usually initiate 5–10 new primordia within a week. They typically show 10- to 30-fold dry weight increases in three weeks. None of the 5,000 meristems cultured has produced any basal callus. Growth is strongly influenced by both the type and concentration of agar used to gel the medium. Dry weight yield increases as agar concentration decreases. This is probably partly due to increased diffusion rates of enzymes or other large molecules through more dilute agar gels but possibly also partly ascribable to unknown agarborne inhibitors. About half of the agar concentration effect can be eliminated by substituting glucose and fructose for sucrose in the medium. This suggests that diffusion of invertase through the agar gel in this medium may be a growth limiting factor. Growth of cultures is also promoted by autoclaving sucrose in the presence of the agar. The basis of this effect is not yet understood.  相似文献   

16.
Development of complete plants was achieved from isolated shoot apical meristems of Nicotiana tabacum L., Daucus carota L., Nicotiana glauca Grah., Tropaeolum majus L., and Coleus blumei Benth. The explants consisted of only meristematic dome tissue with no visible leaf primordia. A simple nutrient medium composed of the Murashige and Skoog salt mixture, 100 mg/liter myo-inositol, 0.4 mg/liter thiamin-HCl, 1-2 mg/liter IAA, 30 g/liter sucrose, and 1% agar was adequate. Histologically there occurred principally tissue enlargement during the first 3-6 days, followed by appearance of bipolar organization in 6-9 days and formation of a well-defined root apex and initiation of first leaf primordium by 12 days.  相似文献   

17.
The mitotic cycle in the apical meristem of Helianthus annuus L. has been investigated during the transition to flowering. Towards the end of the strictly vegetative phase 8 days after sowing the average cell-cycle time, measured by colchicine-induced metaphase accumulation, was 37 hr in the peripheral zone, 83 hr in the central zone and 118 hr in the rib meristem. By Day 12 the cycle had shortened in all zones. By the time of floral initiation on Day 16 the cycle time had returned to its original value in the peripheral zone and the rib meristem, while in the central zone it continued to shorten to 33 hr, approaching the cycle time of the peripheral zone. Cytophotometric measurements of nuclear DNA showed that mitotic activation of the central zone was not associated with any reduction in the proportion of nuclei with a 4 C DNA content. It was calculated that the spatial and temporal variation in cell-cycle time was mainly a function of the length of the G1/G0 phase which lasted about 19 hr in the peripheral zone, 82 hr in the rib meristem, and declined from 55 to 21 hr in the central zone.  相似文献   

18.
The dormant axillary buds of Opuntia polyacantha can be activated by either cytokinins or gibberellic acid. Under the influence of benzylaminopurine (BAP), the axillary bud meristem increases greatly in size and becomes mitotically active. The primordia produced by the meristem develop as normal photosynthetic leaves. Gibberellic acid (GA) also causes the meristem to become mitotically active, but the meristem does not increase in size. The primordia produced under the influence of GA develop as normal cactus spines. Leaf-producing meristems and spine-producing meristems have the same zonation, despite the differences in size. The meristems are composed of a uniseriate tunica, a central mother cell zone, peripheral zone, and a pith rib meristem. The mitotic activity of each of the zones in the leaf-producing meristem differs significantly from the mitotic activity of the corresponding zones in the spine-producing meristem.  相似文献   

19.
Vegetative plants were induced to flower by 16-hr-long days. Apical buds were collected at intervals during several developmental phases up to 63 hr. A stereologic analysis and mitotic index study was conducted on median longitudinal sections of shoot apical meristems. A rise in the mitotic index occurred between 12 and 24 hr within central, peripheral and pithrib meristem zones. Preceding the floral stage a second increase in the mitotic index was observed in peripheral and central zones, but not in the pith-rib meristem zone. A significant rise in apical volume, cell number, height, and width began in the transitional stage and continued to the floral stage. Significant correlation coefficients were observed between these apical parameters. Relative volume and cell population of each zone remained constant from the vegetative to the reproductive stage. Volume fraction occupied by the nucleus and nucleolus remained constant within each zone during the same time period. In each zone the volume of the nucleus was significantly correlated to volume of the nucleolus. It appears a pre-inflorescence apex, while larger, is structurally similar to a vegetative apex.  相似文献   

20.
The vegetative morphology of Theobroma cacao, the cacao tree, was studied in order to provide a foundation for further investigations on the morphogenesis of the cacao dimorphic shoot system. The seedling of cacao has a determinate orthotropic shoot with a (2+3) phyllotaxis. Branch dimorphism is initiated after 1 to 2 years of growth at which time the apical meristem of the orthotropic shoot aborts and a pseudowhorl of plagiotropic branches is initiated from axillary positions in the shoot tip. The plagiotropic branches are characterized by a distichous phyllotaxis and indeterminate growth. Subsequently an axillary bud below the pseudowhorl develops into a new orthotropic shoot. The apical meristem of this shoot eventually aborts and another pseudowhorl is formed. The apical anatomy of the two types of shoots is similar. The developmental potentiality of the orthotropic shoot axillary buds to form one or the other type of shoot was investigated. The phyllotaxis of the axillary buds of the orthotropic shoot is spiral and that of the axillary buds of the plagiotropic branch is distichous. Pruning and apical puncture experiments showed that the axillary buds of a plagiotropic branch, and of an orthotropic seedling shoot which has not yet formed a pseudowhorl, always give rise to the parent type of shoot. However, the axillary buds of an orthotropic shoot which already bears a pseudowhorl give rise to either type of shoot for several nodes below the point of origin of the pseudowhorl. The type of shoot has no influence on the form of branch which develops from an axillary bud grafted to it. This evidence supports the hypothesis that the axillary buds are initiated as one or the other type of shoot, i.e., once initiated they are predestined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号