首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Crosses between triploid and diploid genotypes are usually the best sources of trisomics in potato as well as in several other crop species. However, 3×× 2× crosses between triploid (2n=3×=36; 2EBN) Solanum commersonii-S. tuberosum hybrids and diploid (2n= 2×=24; 2EBN) genotypes gave progenies with a high number of extra chromosomes, 29–36, suggesting that only eggs with 17–24 chromosomes produced embryos that reached full development. Our hypothesis is that although triploids produce eggs with a range of chromosome numbers, 3×× 2× crosses involving a 2×(2EBN) parent favor eggs with a high chromosome number. These eggs have higher probabilities of possessing the same endosperm balance number (EBN) value (i.e. 1) of gametes produced by the 2EBN diploid parent to give the required 2:1 maternal to paternal EBN ratio in the hybrid endosperm. Under this model, trisomics are produced only if the diploid parent has an EBN of 1. Based on our results and those reported in the literature, it is proposed that in 3×(2EBN) × 2×(2EBN) crosses the endosperm balance number exercises negative selection for gametes with a low chromosome number, and a corresponding low EBN, and positive selection for gametes with a high chromosome number and EBN. Received: 2 April 1998 / Revision accepted: 27 October 1998  相似文献   

2.
Although ferns have been developed by hybridization and chromosome doubling, no natural polyploidy has yet been recorded in Osmundaceae. So, we produced hybrids artificially by crosses between Osmunda banksiifolia (2n = 2x = 44) and Osmunda lancea (2n = 2x = 44), and investigated their sporogenesis. From the O. banksiifolia × O. lancea hybrid with 44 univalent chromosomes, allotetraploids with 44 bivalent chromosomes were produced by chromosome doubling, and allotriploids with 22 univalent chromosomes and 22 bivalent chromosomes were then produced by back crosses. The results show when and how chromosome doubling occurs in hybrids. The success of artificial hybridization between O. banksiifolia and O. lancea, did not, however, reflect any product of natural hybridization between the two species.  相似文献   

3.
Abstract

The main objective of the current research was to study the reproductive behaviour of artificial triploid potato hybrids between wild Solanum commersonii and the cultivated potato Solanum tuberosum. When used in 3x × 2x crosses, triploids gave aneuploid progenies with somatic chromosome number ranging from 29 to 36. Fertilization fitness data suggested that the survival rate of gametes produced by the triploid parents may be related to their chromosome number. In addition, consistent with molecular data, our results indicated that fitness of gametes and chromosome number of progenies are influenced by the genome dosage of interspecific triploids. Since a main route to polyploidy formation is via 2n gametes and triploids, our study may contribute to a better understanding of polyploid plant reproduction, evolution and breeding.  相似文献   

4.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

5.
Data on the production of offspring of 4×× 2× crosses in potato are presented. The ploidy composition of seedlings varied from year to year and parent to parent. Products of dihaploid induction crosses were chiefly 2× or 3× whereas crosses between S. tuberosum cultivars and unreduced gamete-producing S. phureja clones were mainly 3× or 4×. Substantial percentages of 3× seedlings were produced by some crosses in some years. It was concluded that the so-called ‘triploid block’ in potatoes is a variable phenomenon and that factors which increase seed production may suppress the proportion of triploids produced.  相似文献   

6.
To understand the correlation between chromosomes behavior and fertility in autotriploid cucumber (Cucumis sativus L.), microsporogenesis in pollen mother cells (PMCs) and male gametophyte development were studied using improved staining and chromosome preparation techniques. Meanwhile, for more efficient selection of trisomics from the progeny of autotriploid-diploid crosses, fertilization rates of ovules from reciprocal crosses were counted to observe the transfer rate of gametes in the autotriploid cucumber. Variable chromosome configurations, e.g. multivalents, quadrivalents, trivalents, bivalents and univalents were observed in the most PMCs of the autotriploids at metaphase I. Chromosome lagging and bridges at anaphase in both meiotic divisions resulted from irregular chromosome separation and asynchronization was frequently observed as well, which led to formation of micronuclei and inviable gametes. The frequency of normal PMCs in autotriploids at the stage of tetrad was only 40.6%. Among those normal microspores, most of them (91.2%) could develop into normal gametophytes with 2 cells and 3 germ pores. Stainability and germination rate of pollen grains were only 18.8 and 13.5%, respectively. However, chromosomes separated to form gametes with 8 chromosomes at anaphase I, suggesting a possible method for the production of primary trisomics from the progeny of autotriploid-diploid crosses. Fruit set of 3n × 2n and 2n × 3n were 80 and 70%, respectively. It obtained an average of 6.2 plump seeds per fruit in 3n × 2n, while 4.9 in 2n × 3n crosses. Transfer rates of gametes through the gastrula or the pollen in autotriploids were 13.4 and 10.4%, respectively. Some aneuploid gametes (n + 1 = 8, n + 2 = 9) also have capability of setting seed and sexual reproduction besides normal gametes containing whole chromosome sets (n = 7, 2n = 14). Further, some primary trisomic plants were selected from the progeny of autotriploid-diploid crosses. Based on the results obtained we suggest that abnormal meiosis in PMCs was the cytogenetic reason for low fertility of autotriploid cucumber pollen. 3n × 2n cross was more efficient for selecting primary trisomic plants in cucumber.  相似文献   

7.
Dioscorea alata is a polyploid species with several ploidy levels and its basic chromosome number has been considered by most authors to be x = 10. Standard chromosome counting and flow cytometry analysis were used to determine the chromosome number of 110 D. alata accessions of the CIRAD germplasm collection. The results revealed that 76% of accessions have 2n = 40 chromosomes, 7% have 2n = 60 chromosomes and 17% have 2n = 80 chromosomes. Progenies were produced from 2n = 40 types of D. alata and the segregation patterns of six microsatellite markers in four different progenies were analysed. The Bayesian method was used to test for diploid versus tetraploid (allo- and autotetraploid) modes of inheritance. The results provided the genetic evidence to establish the diploidy of plants with 2n = 40 chromosomes and to support the hypothesis that plants with 2n = 40, 60 and 80 chromosomes are diploids, triploids and tetraploids, respectively, and that the basic chromosome number of D. alata is x = 20. The findings obtained in the present study are significant for effective breeding programs, genetic diversity analysis and elucidation of the phylogeny and the species origin of D. alata.  相似文献   

8.
Tanaka N  Yokoyama T  Abe H  Ninagi O  Oshiki T 《Genetica》2002,114(1):89-94
To analyze the degree of pairing of the Z and W chromosomes in ZZWW tetraploid female silkworms that have the W chromosomes of the domesticated silkworm, Bombyx mori, and those of the wild silkworm, Bombyx mandarina, we induced two types of ZZWW tetraploid female silkworms (Cr4n, Wr4n) through cold treatment of the eggs. The Wr4n female is congenic to the Cr4n female for W chromosomes; namely, the W chromosomes of the Wr4n female are derived from those of B. mandarina. Each of the sex ratios (/) in filial triploids from the Cr4n females was shown to be in the range of 3.9–5.3 (4.6 as an average of six cases). On the other hand, each of the sex ratios (/) in filial triploids from the Wr4n females was shown to be in the range of 6.2–9.0 (6.9 as an average of nine cases). The results of a t-test indicated that the difference in sex ratios in the two groups is highly significant (at the 0.1% level). These results suggest that, in the meiosis of the ZZWW tetraploid female, the frequency of pairing of the W chromosome of B. mandarina and the Z chromosome of B. mori is lower than that of the pairing of the W and Z chromosomes of B. mori. Furthermore, the t-test results are evidence that the W chromosomes have undergone significant evolutional change.  相似文献   

9.
In the mouse XYY males are sterile, presumably because pairing abnormalities resulting from the presence of three sex chromosomes lead to meiotic breakdown. We have produced male mice, designated XYY*X, that have three sex chromosome pairing regions but only one intact Y chromosome. Unexpectedly XYY*X males are fertile, although they are no more efficient in sex chromosome pairing than previously reported XYY males. We conclude that the sterility of XYY males is caused by a combination of the deleterious effect of two Y chromosomes, presumably acting prior to meiosis, and pairing abnormalities resulting in significant meiotic disruption.by P.B. Moens  相似文献   

10.
Adult triploid zebrafish Danio rerio has previously been reported to be all male. This phenomenon has only been reported in one other gonochoristic fish species, the rosy bitterling Rhodeus ocellatus, despite the fact that triploidy is induced in numerous species. To investigate the mechanism responsible, we first produced triploid zebrafish and observed gonad development. Histological sections of juvenile triploid gonads showed that primary growth oocytes were able to develop in the juvenile ovary, but no cortical alveolus or more advanced oocytes were found. All adult triploids examined were male (n = 160). Male triploids were able to induce oviposition by diploid females during natural spawning trials, but fertilization rates were low (1.0 ± 3.1%) compared with diploid male siblings (67.4 ± 16.6%). The embryos produced by triploid sires were aneuploid with a mean ploidy of 2.4 ± 0.1n, demonstrating that triploid males produce aneuploid spermatozoa. After confirming that adult triploids are all male, we produced an additional batch of triploid zebrafish and exposed them (and a group of diploid siblings) to 100 ng/L estradiol (E2) from 5 to 28 dpf. The E2 treated triploids and nontreated triploids were all male. The nontreated diploids were also all male, but the E2 treated diploids were 89% female. This demonstrates that triploidy acts downstream of estrogen synthesis in the sex differentiation pathway to induce male development. Based on this and the observations of juvenile gonad development in triploids, we suggest that triploidy inhibits development of oocytes past the primary growth stage, and this causes female to male sex reversal.  相似文献   

11.
Crosses between 21 triploid hybrid Cobitis females and 19 C. taenia (2n = 48) males led to viable progeny; whereas no embryonic development was observed in crosses with tetraploid males (4n = 98). The ploidy status of 491 progenies randomly selected with flow cytometry (316) or chromosome analysis (175) revealed an average of 55.2 % triploids and 44.8 % tetraploids, but the ratio of 3n versus 4n fish did change during development. In the first 2 days after hatching, approximately 65.1 % of tetraploid larvae were observed. Their number decreased significantly to 30.8 and 6.2 % on average during 2–5 and 10–15 months of life, respectively. The karyotype of tetraploid progeny (4n = 98) included 3n = 74 chromosomes of the parental female and n = 24 of C. taenia male. The number of tetraploid progeny indicated indirectly that about 66 % of eggs from 3n females were fertilized with C. taenia. The rest of the eggs developed clonally via gynogenesis or hemiclonally via hybridogenesis into triploids of the same karyotype structure as parental females. We have documented for the first time that (at least under experimental conditions) tetraploids are commonly formed, but are less viable than triploids, and a ratio similar to what is found under natural conditions is finally attained. The current explanation concerning the ploidy and karyotype structure of the progeny confirms that the eggs of 3n Cobitis females are not only capable of maintaining all chromosomes but are also capable of incorporating the sperm genome, thus creating the potential to produce tetraploids.  相似文献   

12.
P. E. Brandham 《Genetica》1982,59(1):29-42
In reciprocal crosses between diploid and triploid Aloineae the progeny are largely diploid or diploid plus one or two chromosomes, but in reciprocal crosses between triploids and tetraploids they are tetraploid or nearly so. Thus the triploids contribute circa haploid gametes to the progeny when crossed with diploids but circa diploid gametes when crossed with tetraploids. These results are compared with those of a number of earlier workers. It is concluded that the bias in the frequency of progeny types towards diploidy or tetraploidy, depending on the ploidy level of the plant which is crossed with the triploid, is caused by inter-embryo competition. Those embryos with an endosperm/embryo factor of 1.5, the value found in normal diploid/diploid crosses having triploid endosperms, are selected in preference to those with factors higher or lower than 1.5.Inter-gamete competition also occurs among the euploid and aneuploid gametes produced by the triploids. This is more pronounced on the male side, because the degree of survival of aneuploid pollen from the triploids into the next generation is much lower than that of aneuploid egg nuclei.Non-reduction in the triploids gives rise to occasional pentaploid progeny in crosses with tetraploids, but it is more probable that in diploid/triploid crosses tetraploid progeny are the products of non-reduction in the diploid.  相似文献   

13.
Modern mole voles of the genus Ellobius are characterized by species-specific features of autosomes and sex chromosomes. Owing to the use of the Zoo-FISH method, the nomenclature of chromosomes was refined and nonhomologous Robertsonian translocations indistinguishable by G-staining were identified for Ellobius tancrei, which is a species with a wide chromosome variation of the Robertsonian type. The electron-microscopic analysis of synaptonemal complexes in F1 hybrids of forms with 2n = 50 and 2n = 48 revealed the formation of a closed SC-pentavalent composed of three metacentrics with monobrachial homology and two acrocentrics. Segregation of chromosomes of such complex systems is impeded by disturbances in the nucleus architecture leading to the formation of unbalanced gametes and to a dramatic reduction in fertility of hybrids. Our data support the hypothesis that the formation of monobrachial homologous metacentric chromosomes can be considered as a way of chromosomal speciation.  相似文献   

14.
To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis. Four different probes were used for the FISH analysis: two species-specific and two rDNA probes. The six BC1 plants were obtained from crosses between the hybrid A. aurea×A. inodora with its parent A. inodora. GISH clearly identified all chromosomes of both parental genomes as well as recombinant chromosomes. The sequential GISH and FISH analysis enabled the accurate identification of all individual chromosomes in the BC1 plants, resulting in the construction of detailed karyotypes of the plants. The identification of the recombinant chromosomes provided evidence which chromosomes of the two species are homoeologous. Two of the BC1 plants were aneuploid (2n=2x+1=17) and four triploid (2n=3x=24), indicating that both n and 2n gametes were functional in the F1 hybrid. Using GISH, it was possible to estimate homeologous recombination in two different types of gametes in the F1 hyrid. The positions of the crossover points ranged from highly proximal to distal and the maximum number of crossover points per chromosome arm was three. Compared with the aneuploid plants, the triploid plants (which received 2n gametes) clearly possessed fewer crossovers per chromosome, indicating reduced chromosome pairing/recombination prior to the formation of the 2n gametes. Besides homeologous recombination, evidence was found for the presence of structural rearrangements (inversion and translocation) between the chromosomes of the parental species. The presence of the ancient translocation was confirmed through FISH analysis of mitotic and meiotic chromosomes. Received: 7 October 1998; in revised form: 4 December 1998 / Accepted: 10 December 1998  相似文献   

15.
Triploids can play an important role in polyploid evolution. However, their frequent sterility is an obstacle for the origin and establishment of neotetraploids. Here we analyzed the microsporogenesis of triploids (x?=?7) and the crossability among cytotypes of Turnera sidoides, aiming to test the impact of triploids on the origin and demographic establishment of tetraploids in natural populations. Triploids of T. sidoides exhibit irregular meiotic behavior. The high frequency of monovalents and of trivalents with non-convergent orientations results in unbalanced and/or non-viable male gametes. In spite of abnormalities in chromosome pairing and unbalanced chromosome segregation, triploids are not completely sterile and yielded up to 67% of viable pollen. Triploids that originated by the fusion of 2n?×?n gametes of the same taxon showed more regular meiotic behavior and higher fertility than triploids from the contact zone of diploids and tetraploids or triploids of hybrid origin. The reproductive isolation of T. sidoides cytotypes of different ploidy level is not strict and the ‘triploid block’ may be overcome occasionally. Triploids of T. sidoides produce diploid and triploid progeny suggesting that new generations of polyploids could originate from crosses between triploids or from backcrosses with diploids. The capability of T. sidoides to multiply asexually by rhizomes, would enhance the likelihood that a low frequency of neopolyploids can be originated and maintained in natural populations of T. sidoides.  相似文献   

16.
To promote cytogenetical studies on cucumber (Cucumis sativus L., 2n = 2x = 14), the reciprocal crosses were made between autotriploid and diploid for selecting the primary trisomics. Meanwhile, chromosome behavior during meiosis in autotriploid cucumber was investigated to look for cytological evidences for origin of primary trisomics. Many viable F1 seeds were obtained from reciprocal crosses between autotriploid and diploid. The number of chromosomes of 56 surviving progenies varied from 14 to 28, with plants having 2n = 15 occurring at the highest frequency (51.8%). Primary trisomics were firstly obtained in this study. Four types of primary trisomics were isolated and they could be distinguished from each other, as well as diploid. Variable chromosome configurations, e.g. univalent, bivalents and trivalents were observed in many pollen mother cells of the autotriploid at metaphase I. Binomial chromosome distribution was observed at anaphase I and frequency of 8/13 was 6.25%. The meiosis of autotriploid, especially the class of gametes with eight chromosomes, gave the cytological evidence of producing 2x + 1 type gamete and could be induced into primary trisomic plants from progeny of autotriploid–diploid crosses. These studies have established a ground work for selecting a series of primary trisomics, and further using them for associating linkage groups with specific chromosomes in cucumber.  相似文献   

17.
Empirical evidence from several animal groups suggests sex chromosomes disproportionately contribute to reproductive isolation. This effect may be enhanced when sex chromosomes are associated with turnover of sex determination systems resulting from structural rearrangements to the chromosomes. We investigated these predictions in the dioecious plant Rumex hastatulus, which is composed of populations of two different sex chromosome cytotypes caused by an X-autosome fusion. Using population genomic analyses, we investigated the demographic history of R. hastatulus and explored the contributions of ancestral and neo-sex chromosomes to population genetic divergence. Our study revealed that the cytotypes represent genetically divergent populations with evidence for historical but not contemporary gene flow between them. In agreement with classical predictions, we found that the ancestral X chromosome was disproportionately divergent compared with the rest of the genome. Excess differentiation was also observed on the Y chromosome, even when we used measures of differentiation that control for differences in effective population size. Our estimates of the timing of the origin of neo-sex chromosomes in R. hastatulus are coincident with cessation of gene flow, suggesting that the chromosomal fusion event that gave rise to the origin of the XYY cytotype may have also contributed to reproductive isolation.  相似文献   

18.
The objective of this study was to characterize the genetics of second generation (F2) koi Cyprinus carpio × goldfish Carassius auratus hybrids. Spermatozoa produced by a novel, fertile F1 male were found to be diploid by flow‐cytometric analysis. Backcross (F1 female × C. carpio male and C. carpio female × F1 male) juveniles were triploid, confirming that female and male F1 hybrids both produced diploid gametes. The vast majority of surviving F2 juveniles was diploid and small proportions were aneuploid (2·1n–2·3n and 3·1n–3·9n), triploid (3n) and tetraploid (4n). Microsatellite genotyping showed that F2 diploids repeated either the complete maternal or the complete paternal genotype. Fish with the maternal genotype were female and fish with the paternal genotype were male. This demonstrates that F2 diploids were the result of spontaneous gynogenesis and spontaneous androgenesis. Analysis of microsatellite inheritance and the sex ratio in F2 crosses showed that spontaneous gynogenesis and androgenesis did not always occur in equal proportions. One cross was found to have an approximate equal number of androgenetic and gynogenetic offspring while in several other crosses spontaneous androgenesis was found to occur more frequently than spontaneous gynogenesis.  相似文献   

19.
The results of light and electron microscopic (EM) studies of meiosis in Microtus arvalis males of the karyoform “arvalis” (2n = 46, NFa = 80), in hybrids between the chromosomal forms arvalis and obscurus (2n = 46, NFa = 68), in M. rossiaemeridionalis voles (2n = 54, NFa = 54), and in a hybrid between the species M. rossiaemeridionalis and kermanensis (2n = 54, NFa = 54) are presented. SC (synaptonemal complex) karyotypes of the parental forms and the hybrids were constructed on the basis of measurements of the length of autosomal SCs revealed by the EM analysis in spermatocytes at the stage of middle pachytene. The SC karyotypes of M. arvalis and the hybrids ♀ obscurus × ♂ arvalis consist of 22 synaptonemal complexes of autosomal bivalents and the axial elements of the synaptonemal complexes of the sex chromosomes X and Y. The SC karyotypes of M. rossiaemeridionalis and the hybrid M. rossiaemeridionalis × M. kermanensis consist of 26 synaptonemal complexes of autosomal bivalents and a sex bivalent; they differ only in the length of the Y chromosome axis (Y chromosome in the hybrid was inherited from M. kermanensis). Asynaptic configurations of the autosomal SCs were not observed in the hybrids. The SC axial elements of the X and Y chromosomes in the parental forms and in the hybrids were located close to each other throughout pachytene, but they did not form a synaptic region. The normal synapsis in sterile hybrids (M. rossiaemeridionalis × M. kermanensis) and the behavior of the sex chromosomes in meiosis in fertile and sterile hybrids are discussed in the context of specific features of meiosis and reproductive isolation.  相似文献   

20.
Sex reversal at high temperatures during embryonic development (e.g., ZZ females) provides the opportunity for new genotypic crosses (e.g., ZZ male × ZZ female). This raises the alarming possibility that climatic warming could lead to the loss of an entire chromosome—one member of the sex chromosome pair (the Y or W)—and the transition of populations to environmental sex determination (ESD). Here we examine the evolutionary dynamics of sex‐determining systems exposed to climatic warming using theoretical models. We found that the loss of sex chromosomes is not an inevitable consequence of sex reversal. A large frequency of ZZ sex reversal (50% reversal from male to female) typically divides the outcome between loss of the ZW genotype and the stable persistence of ZZ males, ZW females and ZZ females. The amount of warming associated with sex chromosome loss depended on several features of wild populations—environmental fluctuation, immigration, heritable variation in temperature sensitivity and differential fecundity of sex‐reversed individuals. Chromosome loss was partially or completely buffered when sex‐reversed individuals suffered a reproductive fitness cost, when immigration occurred or when heritable variation for temperature sensitivity existed. Thus, under certain circumstances, sex chromosomes may persist cryptically in systems where the environment is the predominant influence on sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号