首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

2.
All flowers of Anemopsis californica, the most specialized taxon of the family Saururaceae, are initiated as individual primordia subtended by previously initiated bracts, in contrast to the common-primordium initiation of all flowers of Saururus cernuus and of most flowers of Houttuynia cordata. Floral symmetry is bilateral and zygomorphic, and the sequence of initiation among floral parts is paired or whorled. In A. californica, the six stamens arise as three common primordia, each of which later bifurcates to form a pair. The three common primordia occupy sites corresponding to the positions of the three stamens in H. cordata flowers. In Anemopsis, the filaments of each pair are connate. Each stamen pair is vascularized by a single bifurcating vascular bundle. The three carpels per flower are usually initiated simultaneously although there may be some variation. Adnation between stamens and carpels results from zonal growth. Downward extension of the locule, and proliferation and expansion of receptacular tissue and inflorescence cortical tissue around the locule below the bases of the carpels produce the inferior ovary. The inflorescence terminates its activity as a flattened apical residuum, surrounded by bracts subtending reduced flowers most of which have stamens only.  相似文献   

3.
The development of the inflorescence and flowers are described for Gymnotheca chinensis Decaisne (Saururaceae), which is native only to southeast China. The inflorescence is a short terminal spike of about 50–70 flowers, each subtended by a small bract. There are no showy involucral bracts. The bracts are initiated before the flowers, in acropetal order. Flowers tend to be initiated in whorls of three which alternate with the previous whorl members. No perianth is present. The flower contains six stamens, and four carpels fused in an inferior ovary containing 40–60 ovules on four parietal placentae. Floral symmetry is dorsiventral from inception and throughout organ initiation. Floral organs are initiated in the following order: 1) median adaxial stamen, 2) a pair of lateral common primordia which bifurcate radially to produce two stamen primordia each, 3) median abaxial stamen, 4) a pair of lateral carpel primordia, 5) median adaxial carpel, 6) median abaxial carpel. This order of initiation differs from that of any other Saururaceae previously investigated. The inferior ovary results from intercalary growth below the level of stamen attachment; the style elongates by intercalary growth, and the four stigmas remain free. The floral structure of Gymnotheca is relatively advanced compared to Saururus, but its assemblage of specializations differs from that of either Anemopsis or Houttuynia, the other derived genera in the Saururaceae.  相似文献   

4.
In order to determine the extent of floral ontogenetic differences among species of a genus, six species of Gleditsia were studied. Gledilsia is one of only two leguminous genera known in which there is completely helical succession of floral organs. Floral ontogeny was compared in three species (Gleditsia amorphoides, G. aquatica, and G. triacanthos), and late stages in six species (including the first three plus G. caspica, G. delavayi, and G. japonica). Other unusual primitive developmental features include the unequal-sized flower primordia which produce flowers of variable merosity. Order of floral development is also loosely controlled, so that flowers of different growth stages are intermixed in the inflorescence. Variable features include the occurrence of floral bracts, merosity of flowers, number of organs, and position of the first organ (sepal) initiated. The inflorescence type, while usually a raceme, often has lateral branches near the base, or fascicles of flowers at some points. A terminal flower often is present, although not in all species. Sex of flowers and inflorescences also varies, although floral initiation tends to include both stamens and carpel primordia. Suppression of one or the other may occur at different stages of development. Carpel orientation also varies; the cleft may be tilted or inverted occasionally. It is proposed that absence of subtending floral bracts influences development so as to favor radial symmetry and establishment of other “chaotic” characters seen in Gledilsia flowers.  相似文献   

5.
6.
Utilizing scanning electron microscopy, we studied the early floral ontogeny of three species of Caesalpinia (Leguminosae: Caesalpinioideae): C. cassioides, C. pulcherrima, and C. vesicaria. Interspecific differences among the three are minor at early and middle stages of floral development. Members of the calyx, corolla, first stamen whorl, and second stamen whorl appear in acropetal order, except that the carpel is present before appearance of the last three inner stamens. Sepals are formed in generally unidirectional succession, beginning with one on the abaxial side next to the subtending bracts, followed by the two lateral sepals and adaxial sepal, then lastly the other adaxial sepal. In one flower of C. vesicaria, sepals were helically initiated. In the calyx, the first-initiated sepal maintains a size advantage over the other four sepals and eventually becomes cucullate, enveloping the remaining parts of the flower. The cucullate abaxial sepal is found in the majority of species of the genus Caesalpinia. Petals, outer stamens, and inner stamens are formed unidirectionally in each whorl from the abaxial to the adaxial sides of the flower. Abaxial stamens are present before the last petals are visible as mounds on the adaxial side, so that the floral apex is engaged in initiation of different categories of floral organs at the same time.  相似文献   

7.
Floral development in Florex and Ottawa cultivars of red clover (Trifolium pratense L.: Leguminosae) was examined by scanning electron microscopy. No differences between the two cultivars were found. The terminal inflorescence is initiated in the axil of the penultimate bract before the final bract is initiated. After initiation of the final bract, the remnant apical dome is transformed to become the least mature part of the inflorescence dome. Subsequent inflorescences are initiated laterally in basipetal sequence. Inflorescence development is zygomorphic. This leads to an unusual pattern of floret initiation, the oldest florets resting basally and proximal to the penultimate bract. Florets develop with zygomorphic symmetry, each whorl of floral organs developing unidirectionally from the abaxial side. Initiation of the adaxial organ of each whorl is delayed until the abaxial organ of the succeeding whorl has been initiated. Thus there is overlapping development of the whorls of organs. The antepetalous stamens arise in close association with their respective petal primordia. As development proceeds, the corolla tube and the staminal tube exhibit basal zonal growth. In the mature flower, above the distal zone of fusion of the keel petals, marginal cells project and interlock, producing a pollination mechanism that can be sprung by the pollinator.  相似文献   

8.
The morphology, ontogeny, and vascular anatomy of the staminate inflorescences and florets of seven species of Allocasuarina are described. The generally terminal but open-ended inflorescences occur on monoecious or staminate dioecious trees and consist of whorls of bracts, each subtending a sessile axillary floret. Each floret consists of one terminal stamen with a bilobed, tetrasporangiate anther enclosed typically by cuculliform appendages, commonly considered bracteoles, an inner median pair and an outer lateral pair. The mature stamen is exerted, the anther is basifixed and is extrorsely dehiscent. In early development of a male inflorescence very little internodal elongation occurs and enclosing cataphylls appear. The inflorescence apex is a low dome with a uniseriate tunica and a small group of central corpus cells. Bract primordia are initiated by periclinal divisions of C1 followed by further divisions of the corpus and anticlinal divisions in the tunica. The bracts are epinastic and become gamophyllous except apically by cell divisions in both sides of each primordium. Stomata are restricted to the axis furrows and the abaxial tips of the bracts. The axillary florets arise in acropetal succession initiated by periclinal divisions in C1 accompanied by anticlinal divisions in the tunica. The lateral floral appendages are also initiated by C1 followed by anticlinal divisions in the tunica. They become adnate basally later with the subtending bract. The median sterile appendages are initiated in a manner similar to the initiation of the outer appendages. The stamen is initiated by divisions in the outer layers of the corpus and in the tunica, and then develops first by apical growth followed by intercalary growth. The vascular system of the inflorescence is identical to that of the vegetative stem. Each floret is supplied by a single bundle that has its source in a branch from each of the two traces supplying a bract. Six bundles arise from the floral bundle; four of these terminate in the base of the stamen and two form an amphicribal bundle that supplies the anther. Pollen is binucleate, 3- to 7-porate. The exine is tegillate.  相似文献   

9.
The order of floral initiation and subsequent organogeny of Erigeron philadelphicus L. (Asteraceae: Astereae) was found to deviate from the acropetal pattern generally reported for the Asteraceae. Light micrographs show periclinal divisions in the first, second, and deeper subsurface layers of cells on the flanks of the inflorescence apex as the earliest evidence of floral initiation. Scanning electron microscope micrographs indicate that the disk flowers appear first and arise as small protuberances approximately one-third of the way up the previously and undifferentiated highly convex inflorescence apex. A succession of disk flowers arises acropetally in a complex anthotaxy characterized by about 21 dextrorse and 12–15 sinistrorse parastichies (although this pattern is obscured at the apex). After one to three disk flowers have been initiated in each parastichy, the first ray flower initials can be seen to initiate in sites proximal to the oldest and largest disk flowers. Additional ray flowers then initiate basipetally following the dextrorse parastichies established by the disk flowers. Overall floral initiation on the inflorescence apex proceeds acropetally for the disk flowers and basipetally for the ray flowers until the available space is filled. Floral development adheres to the same plan—proceeding bidirectionally on the inflorescence meristem with the oldest and most complete flowers of both types located on the equator established at initiation.  相似文献   

10.
Floral development in Piper was compared between four-staminate species (P. aduncum and P. marginatum) and six-staminate species (P. amalago). All Piper species have a syncarpous gynoecium composed of three or four carpels. The floral apex is initiated by a periclinal division in the subsurface layer in the axil of a bract 40-55 μm high; initiation of the bracts occurs separately and considerably earlier. The floral primordium widens and the first pair of stamens are initiated at either side. The median anterior stamen forms next, and the median posterior later. This sequence is common to all species studied. In the six-staminate P. amalago, the last two stamens form simultaneously in lateral-anterior positions. The stamens hence arise as pairs, and symmetry is bilateral or dorsiventral. The three or four carpels arise simultaneously; they are soon elevated on a gynoecial ring by growth of the receptacle below the level of attachment of the carpels to produce a syncarpous gynoecium. The floral apex lastly produces the solitary basal ovule and is used up in its formation.  相似文献   

11.
The prostrate rhizome of Butomus umbellatus produces branch primordia of two sorts, inflorescence primordia and nonprecocious vegetative lateral buds. The inflorescence primordia form precociously by the bifurcation of the apical meristem of the rhizome, whereas the non-precocious vegetative buds are formed away from the apical meristem. The rhizome normally produces a branch in the axial of each foliage leaf. However, it is unclear whether the rhizome is a monopodial or a sympodial structure. Lateral buds are produced on the inflorescence of B. umbellatus either by the bifurcation or trifurcation of apical meristems. The inflorescence consists of monochasial units as well as units of greater complexity, and certain of the flower buds lack subtending bracts. The upright vegetative axis of Limnocharis flava has sympodial growth and produces evicted branch primordia solely by meristematic bifurcation. Only certain leaves of the axis are associated with evicted branch primordia and each such primordium gives rise to an inflorescence. The flowers of L. flava are borne in a cincinnus and, although the inflorescence is simpler than that of Butomus umbellatus, the two inflorescences appear to conform to a fundamental body plan. The ultimate bud on the inflorescence of Limnocharis flava always forms a vegetative shoot, and the inflorescence may also produce supernumerary vegetative buds. Butomus umbellatus and Limnocharis flava exhibit a high degree of mirror image symmetry.  相似文献   

12.
Myristica fragrans and M. malabarica are dioecious. Both staminate and pistillate plants produce axillary flowering structures. Each pistillate flower is solitary, borne terminally on a short, second-order shoot that bears a pair of ephemeral bracts. Each staminate inflorescence similarly produces a terminal flower and, usually, a third-order, racemose axis in the axil of each pair of bracts. Each flower on these indeterminate axes is in the axil of a bract. On the abaxial side immediately below the perianth, each flower has a bracteole, which is produced by the floral apex. Three tepal primordia are initiated on the margins of the floral apex in an acyclic pattern. Subsequent intercalary growth produces a perianth tube. Alternate with the tepals, three anther primordia arise on the margins of a broadened floral apex in an acyclic or helical pattern. Usually two more anther primordia arise adjacent to each of the first three primordia, producing a total of nine primordia. At this stage the floral apex begins to lose its meristematic appearance, but the residuum persists. Intercalary growth below the floral apex produces a columnar receptacle. The anther primordia remain adnate to the receptacle and grow longitudinally as the receptacle elongates. Each primordium develops into an anther with two pairs of septate, elongate microsporangia. In pistillate flowers, a carpel primordium encircles the floral apex eventually producing an ascidiate carpel with a cleft on the oblique apex and upper adaxial wall. The floral ontogeny supports the morphological interpretation of myristicaceous flowers as trimerous with either four-sporangiate anthers or monocarpellate pistils.  相似文献   

13.
Ontogeny of the inflorescence and flower of Mimosa strigillosa has been studied in order to explore the developmental basis for variation in number of parts, patterns of organ arrangement, and inflorescence architecture. Each racemose inflorescence of M. strigillosa has an acropetal order of initiation of bracts and flowers. Although flowers are initiated in acropetal order, they develop synchronously except for the basal flowers, which are retarded. The ring meristem in the calyx may be considered an expression of precocious fusion, a specialized condition within the genus. Two patterns of organ arrangement (nonsagittal and median sagittal) are distributed among 4- and 5-merous flowers along the inflorescences. Variability in number of parts probably has evolved through reduction of a basic, pentamerous structure, through fusion or suppression. It is proposed that the number of parts and pattern of organ arrangement are correlated features.  相似文献   

14.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

15.
Initiation of floral primordia begins in Agalinis densiflora with production of two lateral adaxial calyx lobe primordia followed by a midadaxial primordium, and then primordia of two abaxial calyx lobes. Initiation of three abaxial corolla lobe primordia is succeeded by that of two stamen pairs and then by primordia of two adaxial corolla lobes. The primordium of the abaxial carpel appears before the adaxial one. Except for the calyx, initiation of primordia proceeds unidirectionally from the abaxial to the adaxial side of the floral apex. Zygomorphy in the calyx, corolla, and androecium is evident during initiation of primordia and is accentuated during organogenesis. The calyx undergoes comparatively rapid organogenesis, but the inner three floral series undergo a protracted period of organogenesis. The perianth series reach maturation prior to meiosis in the anthers. Maturation of the androecium and gynoecium are postmeiotic events.  相似文献   

16.
The ontogeny of the flower and fruit of Illicium floridanum Ellis, the Star Anise, was investigated. Each of 5 or 6 bracts in each mixed terminal bud subtends either a vegetative or floral bud. The solitary flowers occur in terminal or axillary positions. Each flower has 3–6 subtending bracteoles arranged in a clockwise helix. The flowers in our material have 24–28 tepals, 30–39 stamens, and usually 13 (rarely 19) uniovulate carpels. Tepals and stamens are initiated in a low-pitched helix; carpels later appear whorled, but arise successively at different levels on the apical flanks. The floral apex is high-convex in outline with a tunica-corpus configuration; it increases in height and width throughout initiation of the floral appendages. Tepals, stamens, and carpels are initiated by one to several periclinal divisions in the subsurface layers low on the apical flanks, augmented by cell divisions in the outer layers of the corpus. The carpel develops as a conduplicate structure with appressed, connivent margins. Procambium development of floral appendages is acropetal and continuous. Bracteoles, tepals, stamens and carpels are each supplied by 1 trace; the carpellary trace splits into a dorsal and an ascending ventral sympodium. The latter bifurcates to form 2 ventral bundles. The ovular bundle diverges from the ventral sympodium. Ovule initiation occurs in a median axillary position to the carpel, an unusual type of ovule initiation. The fruit vasculature is greatly amplified as the receptacle and follicles enlarge. After carpel initiation an apical residuum persists which is not vascularized; a plate meristem develops over its surface to produce a papillate structure.  相似文献   

17.
The inflorescence primordium of Phyllonoma integerrima (Turcz.) Loes. is initiated on the adaxial side of the leaf primordium. At about the same time, a vegetative bud is formed at the base of the same leaf primordium. The vascular anatomy is the same in the fertile and sterile leaves, except that in the fertile leaf an inflorescence trace departs from the midvein of the leaf at the point where the inflorescence is inserted. Neither the inception nor the procambial supply of the inflorescence provide evidence of “congenital fusion”of inflorescence and leaf. It is also argued that the idea of an “adventitious”origin of the inflorescence is not useful in this case. Consequences for our conception of shoot construction are pointed out. It is argued that positional changes in the initiation of organs is an evolutionary process that may have remarkable effects on plant construction.  相似文献   

18.
三白草(三白草科)花部器官发生   总被引:4,自引:0,他引:4  
In the present study,floral organogenesis of Saururus chinensis was observed and compared with that of 5. cernuus. The two species share essentially similar patterns of floral initiation and stamen development. Their inflorescence produces "common primordia" in acropetal succession on the flanks of the inflorescence meristem. Each primordium bifurcates transversely to form a floral apex above and a bract primordium below. Six stamens arise in three pairs at the floral apex. The median sagittal pair arises first, the lateral distal pair second, and the lateral proximal pair arises last. On the contrary,the initiation of carpels is quite different from each other. In 5. cernuus, the median sagittal pair arises first, and the lateral pair next. In S. chinensis, however, the lateral pair arises first, and the median sagittal pair second. The present study also made a brief generalization using the data obtained from different fields on the relationship of the two species in the genus Saururus, which are dis  相似文献   

19.
The inception and development of the sterile floral appendages of Potamogeton richardsonii have been re-investigated with a refined dissection technique (Sattler, 1968) and improved microtechnical methods (Feder and O'Brien, 1968). The results obtained by Sattler (1965) are confirmed, i.e., the sterile appendages are initiated at the flanks of the floral apex before the stamen primordia are formed. Consequently, they may be homologized with tepals or perianth members, although in the mature flower they are inserted at the stamen connective, due to growth between and at the base of each developing tepal and stamen. Each carpel arises as a radial primordium which becomes peltate immediately after its inception. One ovule primordium is initiated at the cross-zone. The stigma becomes bilobed. A slight outgrowth develops at the abaxial side of the style. The floral apex has a two-layered tunica. The primordia of the tepals, carpels, and ovules arise by periclinal divisions in the second tunica layer, whereas the stamen primordia are initiated by periclinal divisions in the corpus and second tunica layer. Variation in floral pattern, especially with regard to the number of appendages, has been observed in flowers near the tip of the inflorescence axis.  相似文献   

20.
Flowers of Peperomia species are the simplest structurally of any of the members of the Piperaceae. The spicate inflorescences form terminally and in axillary position; in each, the apex first is zonate in configuration with a two-layered tunica while 3-4 leaves are initiated. Later, when the inflorescence apical meristem begins bract initiation, the biseriate tunica persists, but zonal distinctions diminish and the apex can be described in terms of a simple tunicacorpus configuration. The inflorescence apex aborts after producing 30-40 bracts in acropetal succession an abscission layer forms across the base of the apex, and the meristem dries and drops off. Bracts are produced by periclinal divisions in T2 (and occasionally also in the third layer as well); the later-formed floral apices arise by periclinal divisions in T2 and the third layer. Each floral apex is at first a long transverse ridge in the axil, perpendicular to the long axis of the inflorescence. This establishes bilateral symmetry in the flower, which persists throughout subsequent growth. The floral meristem becomes saddle-shaped, and two stamen primordia are delimited, one at either end and lower than the central floral apex. A solitary carpel is initiated abaxially, and soon forms a circular rim which heightens as a tube with an apical pore. Within the open carpel, a solitary ovule is initiated from the entire remains of the floral apical meristem; it, hence, is terminal in the flower, and its placentation is basal. Carpellary closure in P. metallica results from accelerated growth of the abaxial lip, and the two margins become appressed. Species differ greatly as to whether the abaxial or the adaxial lobe predominates in late stages of carpel development. In P. metallica, the receptive portion of the stigma forms from the shorter lobe which is overtopped. Stigmatoid tissue forms internal to the receptive stigma. The prevailing bilateral floral symmetry, absence of a perianth, and the spicate inflorescence are features which distinguish Peperomia (and Piperaceae) from the magnolialian line of angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号