首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apomixis is the ability of plants to produce asexual seeds, which are clones of the mother plant. The phenomenon of apomixis is tightly linked to ploidy, where diploids lack apomixis and reproduce sexually, while higher ploidy levels can exhibit apomixis. Taraxacum F.H.Wigg. species (dandelions) commonly exhibit apomixis; however, only limited studies have evaluated genome size variation of the iconic weedy dandelion, Taraxacum officinale F.H.Wigg. (common dandelion), particularly in North America. To evaluate the ploidy and reproductive biology of common dandelion, we created a global collection, with an emphasis on North America and determined genome size by evaluating seeds with flow cytometry. A total of 635 accessions were screened, and with the exception of two accessions from Germany and Austria, all were found to exclusively contain polyploid seed. The mode of reproduction of a sample of 96 of these accessions was observed by conducting emasculations. Our results indicate that the diploid, sexual cytotype of common dandelion may be absent in North America, while diploids were found in previously described areas of Central Europe. This suggests that the clonal lineages of common dandelion in North America may largely be derivative from apomictic plants introduced from abroad. Furthermore, if all North American common dandelion is apomictic, it may be unreceptive to pollen, which may isolate it from other dandelion species and inform the potential for gene flow.  相似文献   

2.
Gametophytic apomixis is a common form of asexual reproduction in plants. Virtually all gametophytic apomicts are polyploids, and some view polyploidy as a prerequisite for the transition to apomixis. However, any causal link between apomixis and polyploidy is complicated by the fact that most apomictic polyploids are allopolyploids, leading some to speculate that hybridization, rather than polyploidy, enables apomixis. Diploid apomixis presents a rare opportunity to isolate the role of hybridization, and a number of diploid apomicts have been documented in the genus Boechera (Brassicaceae). Here, we present the results of a microsatellite study of 1393 morphologically and geographically diverse diploid individuals, evaluating the hypothesis that diploid Boechera apomicts are hybrids. This genus‐wide dataset was made possible by the applicability of a core set of microsatellite loci in 69 of the 70 diploid Boechera species and by our ability to successfully genotype herbarium specimens of widely varying ages. With few exceptions, diploid apomicts exhibited markedly high levels of heterozygosity resulting from the combination of disparate genomes. This strongly suggests that most apomictic diploid Boechera lineages are of hybrid origin, and that the genomic consequences of hybridization allow for the transition to gametophytic apomixis in this genus.  相似文献   

3.
In plants, gametophytic apomixis is a form of asexual reproduction that leads to the formation of seed-derived offspring that are genetically identical to the mother plant. A common set of RFLP markers, including five rice anchor markers previously shown to be linked to apomixis in Paspalum simplex, were used to detect linkage with apomixis in P. notatum and P. malacophyllum. A comparative map of the region around the apomixis locus was constructed for the three Paspalum species, and compared to the rice map. The locus that controls apomixis in P. simplex was almost completely conserved in the closely related species P. malacophyllum, whereas it was only partially represented in the distantly related species P. notatum. Although strong synteny of markers was noted between this locus and a portion of rice chromosome 12 in both P. simplex and P. malacophyllum, the same locus in P. notatum was localized to a hybrid chromosome which carries markers that map to rice chromosomes 2 and 12. All three Paspalum species showed recombination suppression at the apomixis locus; in the case of P. notatum, this might be due to a heterozygosity for a translocation that most probably negatively interferes with chromosomal pairing near the locus. A common set of markers that show linkage with apomixis in all three Paspalum species define a portion of the apomixis-controlling locus that is likely to contain genes critical for apomictic reproduction.Communicated by R. Hagemann  相似文献   

4.
Polyembryony has been commonly associated with apomixis in the angiosperms and seems to be more common than expected, even in biomes where sexual reproduction processes are predominant. Recent studies in Cerrado, the Neotropical savannas of Central Brazil, showed high frequencies of apomixis and polyembryony and indicated these processes as reproductive and evolutionary alternatives for plants in these areas. In this sense, we investigated the occurrence of polyembryony and its relationships with ecological (season and type of dispersal, ploidy, species distribution and breeding system) and taxonomic (tribe) factors in the Melastomataceae, a mostly tropical family already known for its high frequency of apomixis and very common in Cerrado. We collected seeds from 69 populations of 53 species, which were sown in germination chambers. After seed germination, the presence and number of seedlings per seed were evaluated as a method to estimate polyembryony. We encountered 18 species (33.96%) with polyembryony (more than one seedling, or gemellar seedlings, originated per seed) concentrated in species of the tribe Miconieae (64%) and Microlicieae (16.67%), but absent in Melastomeae. Monoembryony was present only in sexual species, while all apomictic species were polyembryonic. In Miconia, the polyembryony was correlated with polyploidy, and monoembryony with diploid species. Polyembryony was more common among species with wide distribution in the Cerrado region, which indicates that the presence of gemellar seedlings is important for establishment and survival of the group in the Cerrado biome.  相似文献   

5.
6.
Genetic analysis of apomixis in Citrus and Poncirus by molecular markers   总被引:2,自引:0,他引:2  
Propagation of citrus rootstocks depends upon the production of clonal plants from nucellar seedlings. This makes apomixis one of the host important traits in breeding programs for citrus rootstocks. The genetic control of apomixis was studied in a 50-tree progeny derived from the cross C. volkameriana×P. trifoliata using 69 molecular markers and bulked segregant analysis. The proportion of nucellar seedlings was estimated by isoenzymatic analysis of 25 seedlings per tree for 2 consecutive years. The type of embryony (polyembryonic versus monoembryonic seeds) was also determined for fruit-yielding trees. Separate genetic maps for each parental species were developed. The integration and comparison of these maps could be accomplished using common multiallelic segregant loci. Differences in gene synteny between the two species-specific genetic maps were shown. Important distortions in the segregation of markers at several genomic regions, some of them also involving differences in the C-methylation pattern, have been observed, especially for the pollen parent. Analysis of quantitative trait loci (QTLs) revealed the presence of six genomic positions (two in P. trifoliata and four in C. volkameriana) contributing individually up to 24% of the total variation for apomixis. Within the same species, QTLs with positive and negative allele effects were present, even in the same linkage group. One of the markers associated to apomixis (Apo2) is also associated to embryony type. Therefore, the genetic control of apomictic reproduction found in citrus (nucellar embryony) is quite complex compared to what has been reported for gametophytic apomixis. Molecular markers linked to QTLs governing apomixis will be useful to assist selection of future apomictic rootstocks for citrus varieties. Received: 30 November 1998 / Accepted: 28 December 1998  相似文献   

7.
Mc Millan , Calvin . (U. Texas, Austin.), and John Weiler . Cytogeography of Panicum virgatum in central North America. Amer. Jour. Bot. 46(8): 590–593. Illus. 1959.—For 124 clones of Panicum virgatum L. representing 44 local populations from Manitoba and eastern Montana to Texas, the chromosome number was determined. Most of the clones were grown in a transplant garden at Lincoln, Nebraska. Among the earlier-flowering clones from the northern and western area, a preponderance were tetraploids (n = 18). Among the later-flowering clones, the Iowa material was predominantly tetraploid, while those from Nebraska presented a diversity of types (n = 18, 27, 36) within each population. A series of polyploids was common in population samples from southern Kansas, Oklahoma, and Missouri. Through the complex breeding patterns resulting from the common occurrence of a range of polyploidy and the possible action of apomixis, variability within the population is maintained, and with it, genetic insurance for survival in highly unpredictable prairie habitats.  相似文献   

8.
Gametophytic apomixis, or unreduced embryo sac development that results in asexual reproduction through seeds, occurs in several families of angiosperms and must be polyphyletic in origin. The molecular mechanisms underlying gametophytic apomixis have not been discovered and are the subject of intense investigation. A common feature of almost all apomicts is their polyploid nature. From genetic mapping studies in both monocots and dicots, there is low genetic recombination associated with a single (rarely two), dominant locus for either aposporous or diplosporous embryo sac formation. In Pennisetum squamulatum and Cenchrus ciliaris, some DNA sequences mapping to the apospory locus are unique to apomictic genotypes and apparently hemizygous. This sequence divergence at the apomixis locus could be a consequence of genome rearrangements and isolation from genetic recombination, both of which may have contributed to the definition of a chromosomal region as supernumerary. The possible involvement of supernumerary chromatin, formed as a result of interspecific hybridization, in the origin of apomixis, is explored here. Received: 26 October 2000 / Revision accepted: 5 April 2001  相似文献   

9.
We have reviewed past and recent research on the radiation of the North American genus Boechera (Brassicaceae), and discuss future prospects for our understanding of the evolutionary processes and patterns of differentiation in this highly polymorphic genus. Boechera comprises about 80 biennial to perennial species of exclusively North American and Greenlandic distribution. Hybridization and apomixis, in conjunction with polyploidy, were found to play a major role in the origin and maintenance of intraspecific and interspecific polymorphism. However, taxonomic classification within the genus has mainly been based on morphological characters, and diagnostic features discriminating between taxa are often limited. Molecular markers are promising tools for: the assessment of infrageneric phylogen‐etic relationships, the isolation of basal sexual taxa, the detection of hybridization and estimation of its frequency among lineages in time and space, the identification of centres of genetic and species diversity, and the comparison of various reproductive modes. We present and discuss the major achievements obtained since the introduction of molecular methods to Boechera research with respect to these aims, and point out possible shortcomings of specific marker systems. The distribution and transmission of apomixis, polyphyletic origin of genotypes and cytotypes, variation in reproductive system, and the lack of consensus between current taxonomic concepts and evolutionary evidence are the major topics discussed here in the context of hybridization.  相似文献   

10.
Since apomixis was first mapped in Paspalum, the absence of recombination that characterizes the related locus appeared to be the most difficult bottleneck to overcome for the dissection of the genetic determinants that control this trait. An approach to break the block of recombination was developed in this genus through an among-species comparative mapping strategy. A new apomictic species, P. procurrens (Q4094) was crossed with a sexual plant of P. simplex and their progeny was classified for reproductive mode with the aid of morphological, embryological and genetic analyses. On this progeny, a set of heterologous rice RFLP markers strictly co-segregating in coupling phase with apomixis was identified. These markers were all located on the telomeric region of the long arm of the chromosome 12 of rice. In spite of the lack of recombination exhibited by the apomixis-linked markers in P. procurrens, a comparative mapping analysis among P. simplex, P. malacophyllum, P. notatum and P. procurrens, allowed us to identify a small group of markers co-segregating with apomixis in all these species. These markers bracketed a chromosome region that likely contains all the genetic determinants of apomictic reproduction in Paspalum. The implications of this new inter-specific approach for overcoming the block of recombination to isolate the genetic determinants of apomixis and gain a better comprehension of genome structure of apomictic chromosome region are discussed.  相似文献   

11.
Brachiaria (Trin.) Griseb belongs to the family Poaceae, and within the genus, apomixis or sexuality is present in different accessions of the same species. The majority of Brachiaria species are polyploid and apomictic, making strategies for crop improvement by breeding very intricate. In spite of the high frequency of apomictic polyploids, the relationship of polyploidy and hybridization with apomixis in Brachiaria is still unclear. Further analysis requires detailed knowledge regarding the genomic composition of the polyploids. The present work introduces the use of fluorescent in situ hybridization (FISH) into cytogenetic analysis of Brachiaria. Physical mapping of heterologous rDNA sequences, associated with conventional karyotyping of the B. brizantha diploid sexual (BRA 002747) and the tetraploid apomictic (BRA000591) accessions, provided evidence of the latter being of allopolyploid origin. Based on our results and on previous knowledge on apomixis in B. brizantha, we suggest that the origin of apomixis was probably a consequence of hybridization.  相似文献   

12.
One element of gametophytic apomixis is unreduced embryo sac (ES) formation, which often occurs precociously displacing or replacing meiosis and causing apospory or diplospory, respectively. This study evaluated a premise that apomixis may evolve in hybridogenous plants that contain duplicate sets of allelically divergent ovule development heterochrony genes. The duplicate sets of genes would belong to duplicate genomic regions that are recombinationally isolated from each other (no gene flow) by allopolyploidy or paleopolyploidy, and this isolation would genetically stabilize apomixis. For apomixis to evolve, the ancestral donors of the duplicate regions must have differed from each other in timing of megasporogenesis, ES formation and embryony such that epigenetic misexpressions, or competitions in expression, of the duplicate heterochrony genes in hybridogenous derivatives would cause apomixis. Herein, we report substantial heterochrony in onset timing of germline stages among several sexual diploid Tripsacum genotypes, which may have been progenitors of apomictic polyploid Tripsacum. Tripsacum floridanum and Tripsacum zopilotense genotypes entered meiosis early. The former advanced rapidly through ES formation, but the latter entered a lengthy lag phase prior to ES formation. In two Tripsacum dactyloides var. dactyloides genotypes, meiosis occurred late and was followed by a distinct lag phase prior to ES formation. Likewise, the T. dactyloides var. meridonale genotype entered meiosis late, but the lag phase was brief. These differences appear to reflect allelic diversity at loci responsible for onset timing of different germline development stages within and across species and possibly across the recombinationally isolated duplicate chromosome regions in the Tripsacum paleopolyploid haplome (x = 18). Unique combinations of divergent alleles in hybridogenous plants coupled with polyploidy induced gene misexpressions may be required for apomixis to evolve. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Apomixis is a form of asexual reproduction through seed and has the potential to be applied, to great benefit, to agriculture. Understanding the genetic control of apomixis has proven to be a challenging task because the trait is mainly present in wild species and genetic mapping is often impaired by a block of recombination. A physical mapping approach has therefore been undertaken to unlock the genetic control of apomixis in Paspalum simplex Morong, a species with a relatively small genome and which exhibits a degree of genetic synteny with rice. In this paper, we report on the construction of a bacterial artificial chromosome library for Paspalum simplex with a coverage of approximately three genome equivalents and an average insert size of 94 kb. The BAC library was screened with 19 sequence characterized amplified region markers which were 100% linked to apomixis and a recombinant SCAR marker, all developed through a bulked segregant analysis strategy. A mini-sequencing procedure reported in the literature greatly aided the direct development of SCAR markers from amplified fragment length polymorphism bands. Several BAC clones linked to apomixis were identified and assembled into seven contigs and 18 singletons. Two of the BAC clones identified contained independently isolated markers. This is the first such report in an apomictic model that lacks recombination at the locus. We believe that extension of the contigs coupled to high-throughput sequencing will help the understanding of the genomic structure of the apomixis locus in P. simplex.  相似文献   

14.
The introduction of apomixis – seed formation without fertilization – into crop plants is a long‐held goal of breeding research, since it would allow for the ready fixation of heterozygosity. The genetic basis of apomixis, whether of the aposporous or the diplosporous type, is still only poorly understood. Hypericum perforatum (St John’s wort), a plant with a small genome and a short generation time, can be aposporous and/or parthenogenetic, and so represents an interesting model dicot for apomixis research. Here we describe a genetic analysis which first defined and then isolated a locus (designated HAPPY for H ypericum AP OSP ORY ) associated with apospory. Amplified fragment length polymorphism (AFLP) profiling was used to generate a cleaved amplified polymorphic sequence (CAPS) marker for HAPPY which co‐segregated with apospory but not with parthenogenesis, showing that these two components of apomixis are independently controlled. Apospory was inherited as a dominant simplex gene at the tetraploid level. Part of the HAPPY sequence is homologous to the Arabidopsis thaliana gene ARI7 encoding the ring finger protein ARIADNE7. This protein is predicted to be involved in various regulatory processes, including ubiquitin‐mediated protein degradation. While the aposporous and sexual alleles of the HAPPY component HpARI were co‐expressed in many parts of the plant, the gene product of the apomict’s allele is truncated. Cloning HpARI represents the first step towards the full characterization of HAPPY and the elucidation of the molecular mechanisms underlying apomixis in H. perforatum.  相似文献   

15.
Apomixis is a form of asexual reproduction that in plants leads to the production of seed progeny that are exact copies of the mother individual. A mapping population generated by backcrossing a sexual with an apomictic genotype of Paspalum simplex, both at the tetraploid level, was used to find markers co-segregating with apomixis. Genetic analysis showed that apomixis is under the control of a single dominant allele assuming a random chromatid assortment. Five rice markers, mapped in the telomeric region of the long arm of rice chromosome 12, showed tight linkage with apomixis. Genetic and molecular data strongly indicate that the potentiality to express apomixis in P. simplex is given by a relatively large chromosome segment that is inherited as a single genetic unit.  相似文献   

16.
Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).  相似文献   

17.
The Australian midge orchid Corunastylis apostasioides of the tribe Diurideae has completely eliminated any male contribution in the process of seed formation, which occurs directly from the maternal tissue by a process termed apomixis. Here, we report C. apostasioides to be an obligate apomictic species devoid of any sexuality and compare its development to a close sexual relative C. fimbriata (R. Br.) D.L. Jones & M.A. Clem. Apomictic characteristics in C. apostasioides include production of seed in absence of fertilization, frequently closed flowers, production of immature pollen in non-dehiscent anthers, expansion of ovaries despite the lack of fertilization and the absence of a citronella scent that is found in C. fimbriata produced to attract pollinating vinegar flies (Jones 2006). The nature of apomixis in C. apostasioides was examined by ovule histology and amplified fragment length polymorphism (AFLP) in each case drawing comparison with sexual C. fimbriata. In C. apostasioides the central megaspore mother cell undergoes diplosporic apomixis, while additional embryos are derived from nucellar or integument initials formed by sporophytic apomixis. Typical of apomicts, C. apostasioides is polyploid compared to the sexual C. fimbriata. The divergences of C. apostasioides from sexuality to apomictic development are discussed.  相似文献   

18.
We synthesized the results from a flow cytometric seed screen and the literature to infer the phylogenetic origin and the geographical and taxonomic distribution of apomixis in tribe Potentilleae (Rosaceae). We distinguished between regular sexuality and apomixis, the zygotic and parthenogenetic origin of the embryo, and the pseudogamous (i.e. sexual) versus autonomous origin of the endosperm. The combined evidence provides information on reproductive modes for 11 genera and 120 species. For the first time records on reproductive mode are provided for the genus Farinopsis, 29 species (from five genera), and seven series of Potentilla. Regular sexuality was observed in Aphanes, Argentina, Comarum, Dasiphora, Drymocallis, Farinopsis, Fragaria, Horkeliella, Potentilla, and Sibbaldia. Reliable evidence for apomixis is restricted to two evolutionary lineages of Potentilleae: the Potentilla core group and Alchemilla/Aphanes. Early evolutionary divergence of these lineages (approximately 50 Mya), characterized by pseudogamous and autonomous apomictic seed formation, respectively, suggests parallel origins of apomixis. Apomixis is shown to be taxonomically widespread in the whole Northern Hemisphere distribution range of Potentilla, a pattern that is explained by hybrid transfer and repeated intercontinental dispersals. Taxonomic and geographical coverage is discussed with reference to species diversity centres of genera. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 214–229.  相似文献   

19.
Apomixis is facultative in characterized members of the genus Hieracium. The three components that comprise the apomictic mechanism include apospory followed by autonomous embryo and endosperm formation. The time of aposporous embryo sac initiation and mode of embryo sac formation are different in Hieracium piloselloides (D3) and Hieracium aurantiacum (A3.4). Genetic studies have shown that a single dominant locus encodes all three components of apomixis in both species (Bicknell et al. 2000). We histologically examined a range of related, genetically characterized apomictic Hieracium plants derived from D3 and A3.4 to assess conservation of the apomictic mechanism in different genetic backgrounds. The plants varied in ploidy, and also in the amount of DNA introduced from sexual Hieracium pilosella (P4). An apomictic hybrid from a cross between the two apomicts was also examined. The developmental processes observed in the parental apomicts were not conserved in the examined plants and alterations occurred in the components of apomixis. One plant also exhibited adventitious embryony. The results show that other genetic factors can modify apomixis with respect to time of initiation, spatial location, and mode of developmental progression. Both the apomictic locus and the modifiers are essential for efficient penetrance of the trait in Hieracium. Some of the findings in Hieracium correspond with observations in Ranunculus and this is discussed in terms of models for apomictic development and the control of apomixis in crops. Received: 21 June 1999 / Revision accepted: 17 November 1999  相似文献   

20.
We used Nomarski differential interference contrast microscopy of cleared, whole ovules to examine megasporogenesis and megagametogenesis in tetraploid (N = 34) individuals of three species of Amelanchier in Maine. Amelanchier canadensis and A. stolonifera conform to the general pattern of apomixis in the Maloideae by being aposporous and by frequently forming more than one megagametophyte per megasporangium. These species are also pseudogamous; both self and foreign pollen elicit fruit set. Amelanchier bartramiana follows a sexual pattern by producing a triad of megaspores and almost always only one megagametophyte per megasporangium. This boreal shrub, strikingly distinct morphologically and in its habitat preference from other North American species of the genus, is primitive in its sexuality and self-incompatibility relative to other species we have studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号