首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley mild mosaic virus inside its fungal vector, Polymyxa graminis   总被引:2,自引:0,他引:2  
In an electron microscope study to investigate the association of barley mild mosaic virus (BaMMV) with its fungal vector, Polymyxa graminis, thin sections were made of zoospores of the vector and of barley roots containing different stages in the life cycle of the fungus. Immunogold labelling was used to identify the virus in sections. Labelled bundles of presumed virus particles were seen in c. 1% of zoospores liberated from plant roots and in zoospores inside zoosporangia. A few zoosporangial plasmodia had localised labelling but no bundles were seen. No virus particles were seen in sections of resting spores.  相似文献   

2.
Life Cycle of <Emphasis Type="Italic">Plasmodiophora brassicae</Emphasis>   总被引:1,自引:0,他引:1  
Plasmodiphora brassicae is a soil-borne obligate parasite. The pathogen has three stages in its life cycle: survival in soil, root hair infection, and cortical infection. Resting spores of P. brassicae have a great ability to survive in soil. These resting spores release primary zoospores. When a zoospore reaches the surface of a root hair, it penetrates through the cell wall. This stage is termed the root hair infection stage. Inside root hairs the pathogen forms primary plasmodia. A number of nuclear divisions occur synchronously in the plasmodia, followed by cleavage into zoosporangia. Later, 4–16 secondary zoospores are formed in each zoosporangium and released into the soil. Secondary zoospores penetrate the cortical tissues of the main roots, a process called cortical infection. Inside invaded roots cells, the pathogen develops into secondary plasmodia which are associated with cellular hypertrophy, followed by gall formation in the tissues. The plasmodia finally develop into a new generation of resting spores, followed by their release back into soil as survival structures. In vitro dual cultures of P. brassicae with hairy root culture and suspension cultures have been developed to provide a way to nondestructively observe the growth of this pathogen within host cells. The development of P. brassicae in the hairy roots was similar to that found in intact plants. The observations of the cortical infection stage suggest that swelling of P. brassicae-infected cells and abnormal cell division of P. brassicae-infected and adjacent cells will induce hypertrophy and that movement of plasmodia by cytoplasmic streaming increases the number of P. brassicae-infected cells during cell division.  相似文献   

3.
Germination of surface-disinfected resting spores ofPlasmodiophora brassicae and its infection of turnip hairy root hairs were studied. Surface-disinfected resting spores showed higher germination than non-disinfected resting spores. Root hair infection was most frequent in the section of root formed 1 d before inoculation. Root hair infection began 4 d after inoculation, increased up to 6 d, and continued to increase more slowly until 10 to 12 d after inoculation. Growth ofP. brassicae in the root hair of hairy roots was observed serially. Most primary plasmodia differentiated to mature zoosporangia 8–10 d after inoculation. The secondary zoospores were initially released 6 d after inoculation.  相似文献   

4.
In the current study, 18 Trichoderma spp. isolates were obtained from different provinces in central and northern regions of Turkey. The ability of nine selected isolates to suppress the colonisation of roots by P. betae and the multiplication of BNYVV in sugar beet roots under controlled conditions were tested. Roots of seedlings growing in the P. betae-BNYVV-infested soil were analysed by enzyme-linked immunosorbent assay to test for the presence of BNYVV and checked microscopically for the density of cystosori of P. betae. The numbers of P. betae resting spores in cystosori for each treatment were counted using a light microscope. Except for isolates Tr-1 and Tr-5, the effect of selected Trichoderma isolates on suppressing multiplication of BNYVV varied between 4 and 53%. The total number of resting spores in the roots varied between 14.4 and 25.1 for the different Trichoderma spp. treatments. The lowest number of resting spores in clusters was recorded in T. harzianum Tr-8. In addition, the shapes of resting spores were not normal in the Tr-8 treatments. The cystosori from this treatment were also abnormally dark in colour and had deformed walls.  相似文献   

5.
通过扫描电镜和透射电镜观察了禾谷多粘菌PolymyxagraminisLed.休眠孢子堆的超微结构。休眠孢子堆仅分布于寄主根表皮细胞中。休眠孢子堆形状不一,有的呈球状,有的呈律状,少则由几十个,多则由数百个紧密排列的休眠孢子组成。休眠孢子彼此通过刺突连接,细胞壁分4层,第三层局部区域结构松散,可能与初生游动孢子萌发孔有关。成熟休眠孢子细胞质丰富,细胞质膜内侧含有大量脂质粒,细胞质中央含一个细胞核,围围分布线粒体、内质网、高尔基体、液泡等细胞器。成熟的休眠孢子在越夏前大多数已释放初生游动孢子,只剩下空壳。表面凹陷是已释放游动孢子的休眠孢子一个特征。本文还讨论了禾谷多粘菌休眠孢子在病害流行学中的作用。  相似文献   

6.
通过扫描电镜和透射电镜观察了禾谷多粘菌PolymyxagraminisLed.休眠孢子堆的超微结构。休眠孢子堆仅分布于寄主根表皮细胞中。休眠孢子堆形状不一,有的呈球状,有的呈律状,少则由几十个,多则由数百个紧密排列的休眠孢子组成。休眠孢子彼此通过刺突连接,细胞壁分4层,第三层局部区域结构松散,可能与初生游动孢子萌发孔有关。成熟休眠孢子细胞质丰富,细胞质膜内侧含有大量脂质粒,细胞质中央含一个细胞核,围围分布线粒体、内质网、高尔基体、液泡等细胞器。成熟的休眠孢子在越夏前大多数已释放初生游动孢子,只剩下空壳。表面凹陷是已释放游动孢子的休眠孢子一个特征。本文还讨论了禾谷多粘菌休眠孢子在病害流行学中的作用。  相似文献   

7.
Resting spores (cystosori) of Polymyxa graminis, selected from roots of barley plants infected with barley yellow mosaic virus (BaYMV), were used to start mono-fungal sand cultures. Out of 20 attempts using over 800 cystosori, P. graminis became established in 12, and in two of these BaYMV symptoms also occurred. BaYMV was detected by ELISA in extracts of dried roots heavily infected with cystosori and in zoospores of P. graminis. Calculations suggested that, on average, each zoospore carried less than 100 virus particles. In two virus acquisition experiments, non-viruliferous isolates of P. graminis failed to acquire BaYMV from roots of mechanically-inoculated plants. In two further experiments, non-viruliferous isolates were grown on rooted tillers produced from healthy plants and those infected with BaYMV by either vector or mechanical inoculation. Zoospores and cystosori of P. graminis subsequently transmitted the virus, but only from plants where it had been introduced by the vector. Repeated mechanical transmission appeared to have selected a strain of virus that could not be acquired and/or transmitted by the vector. The results provide convincing evidence that P. graminis is a vector of BaYMV but suggest that, in natural populations, only a small proportion of spores may be viruliferous.  相似文献   

8.
Studies were made about resting spores of Synchytrium solstitiale, a chytrid that causes false rust disease of yellow starthistle (YST). During evaluation of this fungus for biological control of YST, a protocol for resting spore germination was developed. Details of resting spore germination and study of long-term survival of the fungus were documented. Resting spores from dried leaves germinated after incubating them on water agar at least 7 d at 10-15 C. Resting spores were viable after storage in air-dried leaves more than 2 y at room temperature, suggesting they have a role in off-season and long-term survival of the fungus. Each resting spore produced a single sorus that contained a single sporangium, which on germination released zoospores through a pore. YST inoculated with germinated resting spores developed symptoms typical of false rust disease. All spore forms of S. solstitiale have been found to be functional, and the life cycle of S. solstitiale has been completed under controlled laboratory and greenhouse conditions. Resting spore galls differ from sporangial galls both morphologically and biologically, and in comparison, each sporangial gall cleaves into several sori and each sorus produces 5-25 sporangia that rupture during release of zoospores. For this reason S. solstitiale should be reclassified as diheterogallic sensu Karling (Am J Bot 42:540-545). Because resting spores function as prosori and produce an external sorus, S. solstitiale is best placed in into the subgenus Exosynchytrium.  相似文献   

9.
Germination of resting spores is described in 2 Synchytrium species viz. Synchytrium lagenariae Mhatre and Mundkur and S. trichosanthidis Mhatre and Mundkur, parasitic on cucurbitaceous hosts. The resting spores of both species behave as prosorus in germination giving rise to an attached superficial sorus of sporangia. Several anomalies observed in germination are briefly described. Efficacy of methods inducing germination is discussed relative to the field conditions.  相似文献   

10.
11.
Photosynthetic rates were compared between Ecklonia cava bladelets with and without zoosporangial sori sampled from the subtidal zone (about 5 m deep) in Nabeta Bay, Shimoda, Japan. Photosynthetic rates of bladelets were lower in the sorus portion than in the non-sorus portion on the basis of area, dry weight and chlorophyll a. Respiration rates were higher in the sorus portion than in the non-sorus portion on the basis of area and chlorophyll a, whereas they were almost the same on a dry weight basis. The differences were mainly due to a large difference in dry weight per unit bladelet area between the sorus and the non-sorus portion. Light compensation points were higher in the sorus portion than in the non-sorus portion.  相似文献   

12.
The plasmodiophoromycete fungus, Polymyxa graminis was observed in the roots of Sorghum bicolor, S. sudanense, Pennisetum glaucum, Triticum aestivum, Cyperus rotundus, Eleucine coracana, Zea mays, Tridax procumbens and Arachis hypogaea collected from Indian peanut clump virus (IPCV)-infested fields. Examination of roots of IPCV-infected S. bicolor, S. sudanense, P. glaucum and T. aestivum grown in previously air dried field soil also showed the presence of cystosori of P. graminis. IPCV-infested soil stored at room temperature for 3 years transmitted the virus to A. hypogaea, T. aestivum and S. bicolor. Roots extracted from IPCV-infected P. glaucum and S. bicolor containing cystosori, and dried root fragments incorporated into sterile soil, transmitted the virus to A. hypogaea and T. aestivum. The root extracts contained primary zoospores of the fungus, presumably arising from cystosori. Utilising root fragments of S. sudanense containing cystosori as inoculum P. graminis was shown to infect both monocotyledonous and dicotyledonous plants. Profuse cystosorus production in rootlets only occurred in monocotyledonous plants. In dicotyledonous plants, in general, only few rootlets showed cystosori. Indian isolates of P. graminis appear to differ from isolates from temperate soils in that they can infect dicotyledonous plants and have a much wider host range.  相似文献   

13.
An obligate intracellular parasite infecting Ectocarpus spp. and other filamentous marine brown algae is described. The pathogen forms an unwalled multinucleate syncytium (plasmodium) within the host cell cytoplasm and causes hypertrophy. Cruciform nuclear divisions occur during early development. Mature plasmodia become transformed into single sporangia, filling the host cell completely, and then cleave into several hundred spores. The spores are motile with two unequal, whiplash-type flagella inserted subapically and also show amoeboid movement. Upon settlement, cysts with chitinous walls are formed. Infection of host cells is accomplished by means of an adhesorium and a stachel apparatus penetrating the host cell wall, and injection of the cyst content into the host cell cytoplasm. The parasite is characterized by features specific for the plasmodiophorids and is described as a new genus and species, Maullinia ectocarpii.  相似文献   

14.
L. Lange  L. W. Olson 《Protoplasma》1981,106(1-2):97-108
Summary An ultrastructural study of zoosporangium development ofSynchytrium, endobioticum (Schilb.) Perc. is presented. Emphasis is placed on the location of the parasitic fungal thallus in the potato host cell, on the specific location of organelles in relation to the developing zoosporangial wall, and on the host cell reaction to the fungal infection. The cytoplasmic organization of the individual sporangia after division of the zoosporangium into a sorus of sporangia is characterized by numerous similarly sized nuclei, well developed dictyosomes, and the presence of many lipid bodies of variable size. Cytoplasmic microtubules are observed to flare out from the functional kinetosome both before and after zoospore cleavage.The ultrastructural details of zoosporangium development are used to revaluate the life cycle ofS. endobioticum as described from light microscopic observations made early in the century (Curtis 1921;Köhler 1923, 1932;Percival 1910).  相似文献   

15.
Lingappa , Yamuna . (U. Michigan, Ann Arbor.) The development and cytology of the epibiotic phase of Physoderma pulposum. Amer. Jour. Bot. 46(3) : 145-150. Illus. 1959.—Physoderma pulposum, a chytrid parasite on Chenopodium album L. and Atriplex patula L., has a zoosporangial epibiotic phase. The latter consists of extramatrical sporangia and intramatrical bushy rhizoids, both enclosed in large protruding galls. The sporangia are subspherical, up to 350μ in diameter, and may produce hundreds of planospores. If planospores settle on the host surface, they develop narrow germ tubes which penetrate the epidermal cells and develop into rhizoids. The planospore body, however, remains on the host surface and develops into a mature epibiotic sporangium in about 20-25 days at 16°C., 12-15 days at 20-25°C., or 6-8 days at 30°C. During development, its nucleus and daughter nuclei divide mitotically with intranuclear spindles until the sporangium contains several hundred nuclei. This is followed by progressive cleavage which delimits the planospore rudiments. When mature sporangia are placed in fresh water, the planospores are quickly formed within 1 hr. at 25°C. and begin to swarm within the sporangia. They escape in large numbers through an opening formed by the deliquescence of a papillum in the sporangial wall. The planospores are subspherical or elongate, 3-5 × 4-6 μ, and each has an eccentric orange-yellow refractive globule and a flagellum 18-22 μ in length. The electron micrographs of the flagella indicate that the flagella are absorbed from tip backward during encystment of the planospores. By periodic inoculation of the host plants with planospores from epibiotic sporangia, as well as from germinating resting sporangia, generation after generation of epibiotic sporangia have been obtained for 4 years. This proves the existence of a eucarpic, epibiotic, ephemeral zoosporangial phase in P. pulposum. Field observations on the duration and sequence of development of the fungus indicate that the endobiotic resting sporangial phase always follows the epibiotic phase. The results of infection experiments also indicate that the epi- and endobiotic phases belong to one and the same fungus, P. pulposum.  相似文献   

16.
Morphology and development of the vegetative, asexual and sexual cycle Olpidium brassicae (Woronin) Dangeard parasitic in the roots of cabbage (Brassica oleracea L. var. capitata) seedlings was studied in detail. Release of zoo-spores through an exit tube from zoosporangia, their motility and encystment on the epidermal cells and root hairs, process of infection/host entry and later thallus development were described. Motility and fusion of 2 planogametes resulting in zygote formation were observed in slide cultures and described. The process of infection by zygotes and developmental stages of resting sporangia were also studied and described.  相似文献   

17.
Durvillaea antarctica (Fucales, Phaeophyceae) is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean), abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria) was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on ‘the strongest seaweed of the world’, which is an important habitat forming and economic resource from the Southern Hemisphere.  相似文献   

18.
A new genus and species of microsporidia, Ovavesicula popilliae n. g., n. sp., is described from the Japanese beetle, Popillia japonica, on the basis of studies by light and electron microscopy. Parasite development primarily occurs within the Malpighian tubules of larvae, and spores are formed in a sporophorous vesicle. Meronts have diplokaryotic nuclei, develop in direct contact with the host cell cytoplasm, and divide by binary fission. Sporonts have unpaired nuclei, develop within a thick sporophorous vesicle, and undergo synchronous nuclear divisions producing plasmodia with 2, 4, 8, 16, and 32 nuclei. Cytokinesis of sporogonial plasmodia does not occur until karyokinesis is complete with 32 nuclei. Intact sporophorous vesicles are ovoid, containing numerous secretory products, and are surrounded by a persistent two-layered wall. The uninucleate spores are regularly formed in groups of 32, and the polar tube in each has six coils.  相似文献   

19.
Desmarestia antarctica Moe & Silva, a new species from the Antarctic Peninsula and the Scotia Arc, is distinguished from all other ligulate members of the genus by the arrangement of zoosporangia, which are produced together with paraphyses in a raised sorus. Among all species in the genus, onlyD. anceps Montagne shares this feature.Desmarestia antarctica is the first species of the genus for which an endophytic gametophyte is demonstrated, the usual host beingCurdiea racovitzae De Wildeman, a red alga of the familyGracilariaceae. The sporophyte contains only a moderate concentration of acid compared to Northern Hemisphere ligulate species, while physodes that probably contain polyphenolic compounds form noticeable speckles and dark margins in preserved plants. Often more than one axis arises from a single holdfast, probably as the result of compounding rather than proliferation.Dedicated to Prof. DrLothar Geitler on the occasion of the 90th anniversary of his birthday.  相似文献   

20.
Collins , O'Neil Ray . (Queens Coll., New York City.) Heterothallism and homothallism in two Myxomycetes. Amer. Jour. Bot. 48(8): 674–683. Illus. 1961.—Single-spore studies of 2 Myxomycetes, Didymium iridis and Fuligo cinerea, revealed that the former is heterothallic and the latter is homothallic. In D. iridis, 256 single-spore isolations were made from sporangia which developed in mass-spore cultures. Of these, 101 germinated and 22 yielded plasmodia that later fructified in most cases. The remaining 79 single-spore cultures produced clones of myxamoebae and swarm cells only. When 18 of the 79 clones were mated in all possible combinations, plasmodia developed in a pattern which showed that the clones were either (+) or (–) with regard to mating type. Fructifications were readily obtained from these plasmodia. Fifty-three single spores of the F1 generation were isolated. Of the 44 that germinated, 9 yielded plasmodia in monospore cultures, and 35 produced clones of myxamoebae and swarm cells only. Twenty-five of the F1 clones were back-crossed with their parents. Results of the back crosses show that each F1 clone is capable of yielding plasmodia with either the (+) or the (–) parent, never with both. When 14 of the F1 clones were mated among themselves, a (+) and (–) mating type system was again revealed. Most of the 22 original single-spore cultures which produced plasmodia, later formed sporangia. From these sporangia, 88 spores were isolated. Seventy-two of these germinated and yielded large populations of swarm cells and myxamoebae, but none produced plasmodia. Twenty of the 72 clones were then mated among themselves. Some matings resulted in plasmodial formation, but the pattern was difficult to interpret. However, when these 20 clones were mated with known (+) and (–) clones, the results appear to be in keeping with a (+) and (–) mating type system. In F. cinerea, 219 single spores were isolated from aethalia derived from mass-spore cultures. Of these, 144 germinated and the same number yielded plasmodia. Fructifications were easily obtained from such plasmodia. Thirty-five second-generation single spores were isolated, of which 15 germinated and 15 yielded plasmodia. These results indicate that F. cinerea is homothallic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号