首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UHL  N. W.; MOORE  H. E.  JR 《Annals of botany》1980,45(1):57-75
Floral organogensis is described for six polyandrous generarepresenting borassoid, caryotoid, ceroxyloid, inarteoid, andgeonomoid major groups of palms. In all, three sepals and threepetals arise from dome-shaped floral apices in alternate pseudo-whorls.After petal inception, the floral apex expands in a differentway in each major group. Different numbers and arrangementsof stamens develop in antesepalous (AS) and antepetalous (AP)positions Primary pnmordia are sometimes distinct, and stamenpnmordia vary in form In borassoid and caryotoid palms, AS whorlsalways consist of three stamens, but several stamens arise inthe lower, wider AP positions Ceroxylon is characterized bylarge primary primordia with two to three stamens developingopposite each petal and, in species with more than 12 stamens,two to three also opposite each sepal. Several stamens ariseon distinctive truncate, AS primordia in a definite patternthat is repeated in AP positions in inarteoid palms In polyandrousgeonomoid genera, stamens arise in AS and AP arcs on a flattrilobed floral apex. Previous work has shown similarities instamen inception in arecoid genera to that in borassoid andcaryotoid palms, and centrifugal initiation in all phytelephantoidpalms. All polyandrous taxa, except phytelephantoid palms, exhibita basic tnmery. The different patterns of apical expansion andstamen arrangement indicate that polyandry has arisen separatelyin each major group of palms. The mode of apical expansion andthe form of the primordia appear to depend on pressures imposedon the floral apices, suggesting that specialization of inflorescencebracts and perianth segments preceded the evolution of polyandry.Correlations of vasculature with developmental patterns areindicated. Lodoicea maldivica (Gmelin) Persoon, Caryota mitis Loureiro, Ceroxylon alpinum Bonpland ex DeCandolle, Socratea exorrhiza (Martius) H. Wendland, Wettima castanea Moore and Dransfield, Welfia georgii H. Wendland ex Burret, palms, androecium, stamen development  相似文献   

2.
The flowers ofDillenia are highly elaborate pollen-flowers adapted to buzzpollination byXylocopa bees. Two major forms of floral architecture (revolver flowers and roundabout flowers) are associated with two different pollination modes. In the first (e.g.,D. suffruticosa), the pollination organs are connivent to a cone; the pollinator grasps the entire cone with its legs and buzzes it; it revolves around its axis and repeats the buzzing in different positions. In the second (e.g.,D. alata, D. philippinensis), the stylar branches are spreading and the stamens are arranged in two sets of two different forms and colourations. The inner set has fewer and longer stamens that are cryptic pollination stamens; those of the outer set are shorter but optically conspicuous feeding stamens. The pollinator squeezes itself under the stylar branches and handles only the outer set by grasping part of the set at a time; it moves tangentially around the flower with several buzzing-stops; when buzzing pollen is sprayed onto its side and back from the inner stamen set. Centrifugal polyandrous androecia are a constitutive feature of flowers inDilleniaceae. InDillenia the centrifugal initiation of stamens proceeds for an unusually long time and is still not finished when the gynoecium is completely closed (in contrast toTetracera). The differentiation of heteranthery seems to be functionally correlated with the extended centrifugal inception. The latest formed stamens are small and sterile in many species. Generic features ofDillenia flowers can be understood from the roundabout architecture: big size, increased number of carpels, syncarpy forming a firm pedestal and spreading firm stylar branches with small, concave stigmas at the end, stamens with short, stout filaments and much elongated poricidal anthers, heteranthery, recurved stamens of the inner set.Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   

3.
Summary The role of abscisic acid (ABA) in stamen and pistil development of the normal and solanifolia (sf/sf) mutant of tomato (Lycopersicon esculentum Mill.) was analyzed. The solanifolia mutant produces flowers with separate floral organs, unlike the fused organs of normal flowers, and has greater number of carpels and locules per ovary than the normal. Applications of 10–5 M ABA to normal floral buds produced flowers with separate stamens, but higher concentrations (10–4 M ABA) resulted in the complete suppression of stamen growth or stamens that were devoid of anthers. ABA at both 10–4 and 10–5 M also induced an increase in the number of carpels and locules in normal flowers, but not in mutant ones. Analysis of endogenous ABA by a radioimmunoassay revealed that the pistils of mutant flowers contained a significantly higher level of ABA than those of normal flowers, but there was no difference in the ABA content of the stamens. The non-fusion of the stamens and the high number of carpels and locules in solanifolia mutant flowers may be explained by the high level of ABA in the floral apex during the initiation and development of carpels.  相似文献   

4.
The flowers of mangrove Rhizophoraceae (tribe Rhizophoreae) are adapted to three different pollination mechanisms. Floral development of representative species of all four genera suggests that the ancestral flower of the tribe was unspecialized, with successively initiated whorls of separate sepals, petals, antisepalous stamens, and antipetalous stamens; at its inception, the gynoecium had a united, half-inferior ovary and separate stigmatic lobes. This developmental pattern is found in Rhizophora mangle (wind-pollinated) and Ceriops decandra (insect-pollinated). In Kandelia, all floral organs distal to the sepals are initiated simultaneously, and there has apparently been an evolutionary amplification in the number of stamens to about six times the number of petals. Explosive pollen release evolved independently in C. tagal and in Bruguiera. In the former, all stamens belong to one whorl and arise simultaneously upon a very weakly differentiated androecial ring primordium. In Bruguiera, the androecial ring is pronounced, and two whorls of stamens arise upon it; the primordia of the antisepalous whorl arise first but are closer to the center of the apex than the antipetalous stamen primordia. The antisepalous stamens bend toward and are enclosed by the petals early in development. In all genera, the inferior ovary develops by zonal growth of receptacular tissue; additional intercalary growth above the placenta occurs in Bruguiera. In general, floral specialization is accompanied by an increase in the width of the floral apex compared to the size of the primordia, increasing fusion of the stylar primordia, and decreasing prominence of the superior portion of the ovary. Apparent specializations of petal appendages for water storage, including the presence of sub-terminal hydathodes (previously unreported in any angiosperm), were found in two species in which flowers remain open during the day but were absent from two species normally pollinated at night or at dawn. Distinctive tribal characteristics that may aid in phylogenetic analysis include the mode of development of the inferior ovary; the aristate, bifid, usually fringed petals that individually enclose one or more stamens; the intrastaminal floral disc; and the initially subepidermal laticiferous cell layer in the sepals and ovary.  相似文献   

5.
Developmental evidence shows that the acervulus, a distinctive flower cluster found only in the chamaedoreoid group of palms, is a form of cincinnus. In Hyophorbe indica Gaertner, the unit consists of a row of sessile flowers, the upper 3–4, staminate and the basal flower, pistillate. During initiation, each new flower originates from divisions in the T2 and underlying layers of the lower right or left flank of the apex of the preceding flower. A bract subtending the first flower is evident in early stages, is displaced basipetally as the flowers are formed, but is obscured when flowers are mature. No other bracts are associated with the unit. One to two outer bundles of the vascular cylinder of the rachilla develop first to the uppermost flower. Subsequently, bundles to other flowers arise as lower branches of the first bundle and from other, often small outer bundles of the rachilla that become floral traces or produce one or more branches to a flower. Many of the bundles supplying the flowers bend sharply downward in the cortex of the rachilla, apparently reflecting the basipetal sequence of floral inception.  相似文献   

6.
The floral development of staminate and pistillate flowers of Ceratophyllum demersum was observed, with particular focus on the phyllotactic variation in staminate flowers, using scanning electronic microscopy (SEM). We discerned patterns of development of some important new morphological features, e.g., the difference and discontinuity between the organ initiation in stamens and that in bracts (or tepals) and the initial presence of a mucilaginous appendage on each pistil. Female flowers are considered to be very specialized through reduction. In male flowers stamen initiation changes between early and late floral development. The four or five stamens in the outermost whorl initiate first on the abaxial and lateral sides of the floral apex and only later on the adaxial side (unidirectional). Later the inner stamens initiate spirally, and this is the main pattern in the stamen initiation. Members of each whorl differ among themselves in time of initiation and in ultimate size. The phyllotactic variation in staminate flowers of Ceratophyllum, suggested by previous studies, is derived from the variation in stamen number and the difference of stamen initiation between the early and later stages. The development in Ceratophyllum has some similarities to those of ANITA plants except for Nymphaeales.  相似文献   

7.
The development of the bisexual flower of Lophotocarpus calycinus and of the unisexual flowers of Sagittaria latifolia has been observed. In all eases floral organs arise in acropetal succession. In L. calycinus, after initiation of the perianth, the first whorl of stamens to form consists of six stamens and is ordinarily followed by two alternating whorls of six stamens each. The very numerous carpels arc initiated spirally. In the male flower of S. latifolia the androecium develops in spiral order. A few rudimentary carpels appear near the floral apex after initiation of the stamens. There are no staminodia. The female flower has a similar developmental pattern to that of Lophotocarpus except that a prominent residual floral apex is left bare of carpels. The vascular system in all flowers is semiopen, with vascular bundles passing to the floral organs in a pattern unrelated to the relative positions of those organs. The androecia of these two taxa are similar to those of some Butomaceae and relationships based on ontogeny and morphology are suggested. The gynoecia are meristically less specialized but morphologically more specialized than the gynoecia of Butomaceae.  相似文献   

8.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

9.
10.
Interpretation of the Potamogeton flower is complicated by the attachment of the “perianth segment” to the stamen connective. Developmental studies show that the perianth segments are not outgrowths of the stamen connectives. They are initiated on the floral apex acropetally before the (superposed) primordia of the stamens. After the inception of the stamen primordia, growth occurs in the regions between the primordia of each perianth segment and stamen. Thereby the bases of the developing perianth segment and stamen become united, and in the adult flower eventually the perianth segment is inserted on the connective of the stamen. The primordium of the perianth segment develops from the 2 outer layers (tunica) of the floral apex, in contrast to the stamen primordium which originates from the 3 outer layers. The vascular bundles for each perianth segment–stamen region develop acropetally from 1 common bundle which bifurcates into 1 bundle for the perianth segment and 1 for the stamen. The bundle leading into the perianth segment branches in a more or less dichotomous manner. The veins form none or only 1 or 2 anastomoses at the base of the lamina, whereas the vein endings remain free. The interpretation of the perianth segments is discussed in terms of the classical and the gonophyll theory. Since both theories rest on an ambiguous methodological basis, interpretation is postponed until a new approach to comparative morphology has been worked out and until the floral development of other Helobiales has been studied.  相似文献   

11.
A survey of the three-dimensional organization of stamen vasculature in 100 genera and over 350 species of Araceae was made using clearings. The Araceae exhibit highly varied stamen vasculature, with three main patterns: 1) vascular bundles unbranched, 1–3 per stamen, 2) forked bundles in some or all stamens, 3) anastomosing vascular systems with several to many bundles entering a single stamen. Three major groups of taxa in the family can be recognized on the basis of their predominant pattern of stamen vasculature. Virtually all genera with bisexual flowers (most Pothoideae, Monsteroideae, Calloideae, Lasieae) have unbranched bundles, one per stamen, except two to three in some species of Holochlamys, Spathiphyllum, and Scindapsus. Forked stamen bundles are virtually restricted to and occur nearly throughout the monoecious Lasioideae, Philodendroideae, Colocasioideae and among certain Aroideae (sensu Engler), including tribes Arophyteae, Spathicarpeae (Asterostigmateae) and Protareae. No forked bundles were found in tribe Areae (Aroideae), except Theriophonum indicum or any Araceae with bisexual flowers, except two species of Cyrtosperma. Anastomosing systems are virtually limited to members of tribe Areae with larger stamens, such as Arum, Helicodiceros, Eminium and Dracunculus species. A similar pattern occurs in some Amorphophallus, but other patterns occur as well. The distributions of forked bundles and anastomosing systems in the family are notable because they are both highly congruent with Philodendroideae-Colocasioideae, and Aroideae, respectively, in Grayum's new system for the family. Virtually all of the genera with forked bundles are grouped together in the Philodendroideae-Colocasioideae. All of the genera with anastomosing systems are in the Areae, including the complex and variable Amorphophallus, which has an uncertain systematic placement.  相似文献   

12.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

13.
The development of the inflorescence and flowers are described for Gymnotheca chinensis Decaisne (Saururaceae), which is native only to southeast China. The inflorescence is a short terminal spike of about 50–70 flowers, each subtended by a small bract. There are no showy involucral bracts. The bracts are initiated before the flowers, in acropetal order. Flowers tend to be initiated in whorls of three which alternate with the previous whorl members. No perianth is present. The flower contains six stamens, and four carpels fused in an inferior ovary containing 40–60 ovules on four parietal placentae. Floral symmetry is dorsiventral from inception and throughout organ initiation. Floral organs are initiated in the following order: 1) median adaxial stamen, 2) a pair of lateral common primordia which bifurcate radially to produce two stamen primordia each, 3) median abaxial stamen, 4) a pair of lateral carpel primordia, 5) median adaxial carpel, 6) median abaxial carpel. This order of initiation differs from that of any other Saururaceae previously investigated. The inferior ovary results from intercalary growth below the level of stamen attachment; the style elongates by intercalary growth, and the four stigmas remain free. The floral structure of Gymnotheca is relatively advanced compared to Saururus, but its assemblage of specializations differs from that of either Anemopsis or Houttuynia, the other derived genera in the Saururaceae.  相似文献   

14.
The flower of Hydrocleis nymphoides consists of three sepals which arise in spiral succession, three simultaneously arising petals, numerous stamens and staminodia which arise in centrifugal order, and six carpels. A residual apex remains at maturity. The first-formed members of the androecium are stamens and the later-formed members are staminodia which develop below the stamens and which become outwardly displaced during expansion of the receptacle. The androecium is supplied by branching vascular trunk bundles. The carpels are completely open but the ventral margins are slightly conduplicately appressed basally. A single dorsal bundle provides the stigmatic area with vascular tissue, and a network of small placental bundles supplies the numerous laminar ovules. There are no clearly defined ventral bundles. It is suggested that Hydrocleis nymphoides is neither the most primitive nor the most advanced member of the family. A pattern of phylogenetic reduction in the androecium and receptacle is suggested for the entire family.  相似文献   

15.
We describe in detail the floral ontogeny of Nymphaea tetragona from a wild population to provide evidence regarding the phylogenetic position of Nymphaea and to reveal evolutionary trends of flowers in Nymphaeaceae by comparison with that of the other genera. Four sepals are initiated unidirectionally. The basal petals are initiated unidirectionally and alternate with the sepals. The dome‐shaped floral apex continues to expand and produces more petal and stamen primordia. The remaining petals and all stamens are initiated in spirals or whorls. Later, the periphery of the floral apex grows more quickly than the centre and results in a depression in the centre of the apex after all stamens have been initiated. Carpels are simultaneously initiated in a cycle at the periphery of the depression. They are ascidiate. After all organs have been initiated, the centre of the depression on the floral apex grows and develops into a globular structure. The connected inferior ovary, stigma caps and the globular floral apex together form an extragynoecial compitum. Within Nymphaeaceae, the floral ontogeny of Nymphaea is most similar to that of Euryale and Victoria. It differs more from Ondinea and Barclaya, and differs most from Nuphar. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 211–221.  相似文献   

16.
Early floral development of four species from the genera Anneslea, Cleyera, Eurya, and Ternstroemia of Pentaphylacaceae, was studied comparatively using scanning electron microscopy. Together with earlier studies in Euryodendron and Adinandra, 6 out of 12 genera of Pentaphylacaceae have now been studied for their floral development. The usually pentamerous flowers of these taxa share a number of developmental features: the perianth organs appear in a clockwise or anticlockwise spiral sequence on the floral apex with relatively long plastochrons between successive organs, resulting in conspicuous size differences among perianth organs during early developmental stages. The early development of the usually polystemonous androecium is characterized by an indistinct ring-primordium and a mostly concave floral apex; individual stamens appear subsequently on this ring-primordium. However, further development of the androecium differs conspicuously among taxa and we describe three main developmental patterns for the family including features such as centripetal stamen whorls and stamens fascicles. Unusual features of floral development and organization of Pentaphylacaceae include: (1) a pronounced spiral sequence of organ appearance during early floral development in perianth and androecium; (2) the occurrence of paired organs in the corolla and the androecium of some species; (3) sepals and petals that are positioned opposite from each other in the genera Anneslea and Ternstroemia; and (4) a concave floral apex at the beginning of androecium development. From a systematic point of view our results clearly support a close relationship between Anneslea and Ternstroemia and also suggest a closer relationship among Adinandra, Cleyera, and Euryodendron on the one hand and between Eurya and Visnea on the other. Further, our developmental study stresses the differences between Pentaphylacaceae and Theaceae, which earlier where thought to form a natural group of plants. While high stamen numbers are achieved via centripetal pattern of stamen formation in the former family, stamens are formed centrifugally in the latter.  相似文献   

17.
Flowers of the organ number (meristic) mutant clavata1-1 of Arabidopsis thaliana (Brassicaceae) were studied to examine timing and patterns of floral organogenesis as compared to the wild type. All clavata1-1 flowers examined had four- instead of two-loculed gynoecia; half showed increased numbers of stamens; and 10% formed increased numbers of sepals. An inflorescence plastochron index was used to establish the timing of developmental events during flower organogenesis. clavata1-1 flowers initiate faster but grow more slowly than in the wild type. The stages of sepal and stamen initiation were prolonged compared to those of the wild type. Although gynoecial initiation was not prolonged, the preceding stage was and it was characterized by a proliferation of meristematic cells above the initiating stamens. The clavata1-1 flower apex did not become wider than that of the wild type until after the establishment of the gynoecium. We propose that clavata1-1 is a heterochronic mutant, where flower organ number increases are due partly to prolongation of organ initiation stages.  相似文献   

18.
Bauhinia malabarica and B. divaricata have both been reported to have dimorphic flowers; floral development of these species has been investigated and compared using SEM. B. malabarica is subdioecious, with three types of flowers: perfect, staminate, and carpellate. Individual trees usually have only one type of flower. Perfect and carpellate flowers have similar initiation of floral organs; each has five sepals, five petals, two whorls of five stamen primordia and a carpel primordium. The carpels of carpellate flowers do not differ from those of perfect flowers throughout development. Both have a gynophore or stipe and a cuplike hypanthium. Stamen development diverges markedly after mid-development: the perfect flowers have ten stamens in two whorls, the outer with longer filaments than the inner. All stamens have anthers, which are covered abaxially with abundant inflated trichomes. Carpellate flowers have a circle of short cylindrical staminodia, each bearing a few hairs, about the base of the carpel on the rim of the hypanthium. Heteromorphy in B. malabarica is effected by suppression of stamen development, even though the usual number of stamen primordia is initiated. Suppression of stamens occurs at midstage in development in carpellate flowers of B. malabarica, and is complete. In B. divaricata nine stamen primordia are released from suppression in late stage, undergo intercalary growth and form a staminodial tube around the carpel stipe. The dimorphy in B. divaricata is expressed late in bud enlargement as divergent rates of growth in the carpel in the two morphs.  相似文献   

19.
Distinctions in floral ontogeny among three segregate genera (Cassia sensu stricto, Chamaecrista, and Senna) of Cassia L. support their separation. In all species studied, the order of floral organ initiation is: sepals, petals, antesepalous stamens plus carpel, and lastly antepetalous stamens. Sepal initiation is helical in all three genera, which however differ in whether the first sepal is initiated in median abaxial position (Senna), or abaxial and off-median (Cassia javanica), a rare character state among legumes. Order of petal initiation varies: helical in Senna vs. unidirectional in Cassia and Chamaecrista. Both stamen whorls are uniformly unidirectional. Intergeneric ontogenetic differences occur in phyllotaxy, inflorescence architecture, bracteole formation, overlap of initiation among organ whorls (calyx/corolla in Cassia; two stamen whorls in Chamaecrista), eccentric initiation on one side of a flower, anther attachment, anther pore structure, and precocious carpel initiation in Senna. The asymmetric corolla and androecium in Chamaecrista arise by precocious organ initiation on one side (left or right). The poricidal anther character can result from differing developmental pathways: lateral slits vs. sealing of lateral sutures; clasping hairs vs. sutural ridges; terminal pores (one or two) vs. none; and clamp layer formation internally that prevents lateral dehiscence. Genera differ in corolla aestivation patterns and in stigma type. Convergence is shown among the three genera, based on intergeneric dissimilarities in early floral ontogeny (floral position in the inflorescence, bracteole presence, position of the first sepal initiated, order of petal initiation, asymmetric initiation, overlap between whorls, anther morphology, and time of carpel initiation) resulting in similarities at anthesis (showy, mostly yellow salverform flowers, heteromorphic stamens, poricidal anther dehiscence, bee pollination, and chambered stigma).  相似文献   

20.
Floral development in three species each of Leptospermum and Kunzea, and one species of Agonis, is described and compared. Differences in the number of stamens and their arrangement in the flower at anthesis are determined by the growth dynamics of the bud. In Leptospermum, early expansion of the bud is predominantly in the axial direction and causes the stamen primordia to be initiated in antepetalous chevrons. In Kunzea, early expansion occurs predominantly in the lateral direction and successive iterations of stamen primordia are inserted alternately at more or less the same level. In both genera, further expansion in the lateral plane spreads the stamens into a ring around the hypanthium. Agonis flexuosa is similar to Leptospermum. Other variable factors include the timing at which stamen initiation commences (earlier in Leptospermum than Kunzea), the duration of stamen initiation (hence the total number of stamens produced – varies within genera), and very late differential expansion that forces stamens into secondary antesepalous groups in A. flexuosa and L. myrsinoides.The authors thank Dr H. Toelken for kindly providing some material and the impetus for this project. This research was supported by Australian Research Council grant AS19131815.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号