首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

2.
Properties of the fully developed phosphate transport system in the fertilized egg of the sea urchin, Strongylocentrotus purpuratus, were investigated. The rates of phosphate transport at concentrations of external phosphate of 1 to 44 μM, both in the absence and in the presence of 100 μM arsenate, exhibit typical saturation kinetics. At sea water concentrations of 2 μM phosphate, the rate of uptake is about 2 × 10?9 μm/egg/minute at 15°C. Arsenate is a competitive inhibitor of phosphate transport, fully and immediately reversible in its effects, yielding Ki values ranging from 10.5 to 14.1 × 10?6 M in comparison to the corresponding apparent KM (Michaelis-Menten) constants for phosphate of 5.6 to 7.5 × 10?6 M (pH 8.0, 15°C). The rate of arsenate uptake in a phosphate deficient medium amounts to 2.8 to 2.9 × 10?10 μm arsenate/egg/minute at an arsenate concentration of 2.9 to 10.2 μM arsenate (HAsO4??), which is 9.5 and 5.6% of the rate of phosphate uptake at corresponding phosphate concentrations. Arsenate has essentially the same developmental effects at initial concentrations of 5–10 μM and 100 μM arsenate, namely no observable effects for exposure periods of 7.5 hours, although longer periods result in blockage of development at the early blastula stage. Outward flux of phosphate ions cannot be demonstrated by washing prelabelled eggs with sea water containing low or high concentrations of phosphate, even when phosphorylation has been blocked by exposing the eggs to a metabolic inhibitor. Phosphate uptake rates measured in the pH range from 5.0 to 10.0 reveal a sharp optimum at pH 8.8–8.9. Reference to the apparent pK' values of the phosphoric acid system indicate that the entering species is the HPO4?? ion. The effects on rates of phosphate uptake of exposure to sea water at pH values between 7 and 10 for 30 minute periods are fully reversible, but at lower pH values, reversal is delayed, and is only partial. Sodium molybdate (0.01 M), sodium pyrophosphate (1.5 × 10?4 M), and adenosine triphosphate (1–5 × 10?4 M) for exposure periods ranging from 40 to 180 minutes did not significantly affect phosphate uptake. Omission of Ca++ ion from artificial sea water is without effect on phosphate uptake but the absence of both Ca++ and Mg++ results in profound and irreversible depression of both phosphate uptake and development. The data of this and the following paper are consistent with the conclusion that the transport of phosphate involves a surface located carrier. The apparent secondary and tertiary ionization constants of phosphoric acid in sea water (ionic strength = 0.6885) were measured, resulting in a value for pK′2 = 6.14 and for pK′3 = 10.99, at 15°C and phosphate at infinite dilution.  相似文献   

3.
To develop a cost effective process for bioinsecticides production by Photorhabdus temperata, dissolved oxygen (DO) requirements were investigated in both the complex and the optimized media using diluted seawater as a source of micronutrients. By varying DO concentrations, tolerance to hydrogen peroxide was shown to be medium dependant. Indeed, P. temperata cells grown in the complex medium, exhibited higher tolerance than cells grown in the optimized medium (OM). Tolerance to H2O2 was shown to be related to intracellular reactive oxygen species (ROS) accumulation during soya bean meal or glucose assimilation, as shown by flow cytometry analysis. To avoid oxidative stress damages in P. temperata cells cultured in the OM, DO concentration should be constant 50% saturation throughout the fermentation. However, a DO‐shift control strategy was demonstrated to be beneficial for P. temperata bioinsecticide production in the complex medium. By using such a strategy biomass, culturability, and oral toxicity reached 16.5 × 108, 1.15 × 108 cells/mL and 64.2%, respectively, thus was 16.19, 26.37, and 12.2% more than in the cultures carried out at a constant 50% saturation. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

4.
The positional distributions in potential of lateral root budding and oxygen uptake rate were examined using the segments of madder and horseradish hairy roots with a length of 5.0×10−3 m obtained at different mean distances from the root tips of l=7.5×10−3–47.5×10−3 m. The average rate of lateral root budding and oxygen uptake rate of the roots with smaller l values were higher and both the rates gradually decreased with increase in l value. Positive relations were observed between the rates of lateral root budding and oxygen uptake of both the hairy roots. The relation indicated that the potential of lateral root budding was suppressed at the oxygen uptake rates of 0.15×10−5 and 0.32×10−5 mol O2/(h m) for madder and horseradish hairy roots, respectively.  相似文献   

5.
2-deoxyglucose uptake rates at low sugar concentrations (less than 500 μM) appeared to be lower than those predicted by the Michaelis-Menten model which correctly described higher concentrations. This phenomenon which we will call concentration-dependent transport lag, was also observed for L-glucose uptake which suggest that this phenomenon is carrier-independent. A model involving the perimembrane space is developed which, for L-glucose, gives k1 = 0.931 ± 0.072 × 10?6 l. mg protein?1. minute?1, k2 = 2.97 ± 0.19 × 10?7 l. mg protein?1. minute?1 and So = 88,8 ± 4,3 μM; where k1 is the diffusion constant in the cell membrane, k2 is the diffusion constant in the perimembrane space and So the sugar concentration required in the external medium in order to provide an équivalent sugar concentration in the transport carrier area.  相似文献   

6.
Summary Na+,K+-ATPase, HCO 3 -ATPase, Ca2+,Mg2+,-ATPase, Ca2+-ATPase, and alkaline phosphatase activities were measured in cultures of osteoblastlike cells treated with fluoride and cortisol separately and in combinations. Low concentrations of cortisol increased HCO 3 -ATPase (10−11 to 10−18 M cortisol) and alkaline phosphatase (10−11 to 10−9 M cortisol) activities, but higher cortisol concentrations reduced these activities. Na+,K+-ATPase, Ca2+,Mg2+-ATPase, and Ca2+-ATPase activities tended only to be reduced by cortisol. Fluoride (10−6 and 5×10−6 M) increased HCO 3 -ATPase and alkaline phosphatase activities, but these activities were similar to controls in the presence of 10−5 M fluoride. Ca2+,Mg2+-ATPase activity was decreased and Na+,K+-ATPase activity was increased as the concentration of fluoride increased (10−6 to 10−5 M). Preliminary experiments with fluoride indicated that lower concentrations (10−7 M) were without effect. Cortisol concentrations of 10−9 and 10−8 M were chosen for studies with combinations of cortisol and fluoride because the effects of these concentrations on alkaline phosphatase activity were opposite, i.e. 10−9 M increased whereas 10−8 M decreased activity. Fluoride concentrations of 10−6, 5×10−6, and 10−5 M were chosen because a peak of alkaline phosphatase activity occurred at 5×10−6 M fluoride. Higher (10−4 M) and lower (10−7 M) fluoride concentrations were without effect. The effects of combinations of cortisol and fluoride depend on the enzyme activity measured. Fluoride (10−6 M) combined with cortisol (10−9 M) produced a peak of Na+,K+-ATPase activity. The increased activity obtained with all concentrations of fluoride alone was preserved when fluoride was combined with 10−8 M cortisol, although the activity tended to be reduced at 5×10−6 and 10−5 M fluoride. HCO 3 -ATPase activity was increased by fluoride combined with 10−8 M cortisol and decreased by fluoride combined with 10−9 M cortisol compared to the activities obtained with fluoride alone. The decrease in Ca2+,Mg2+-ATPase activity caused by fluoride alone was prevented by 10−9 and enhanced by 10−8 M cortisol, although all treatments produced the same activity at 10−5 M fluoride. Ca2+-ATPase activity tended to be increased by combinations of fluoride and cortisol, but significantly so only at 10−5 M fluoride in combinations with 10−8 and 10−9 M cortisol. Alkaline phosphatase activity was increased by fluoride combined with 10−9 M cortisol and decreased by fluoride combined with 10−8 M cortisol compared to the activities obtained with fluoride alone. These results suggest that the abilities of bone cells to regulate ion transport (as reflected in their ion-transporting ATPase activities) are modulated by glucocorticoids and fluoride. Inasmuch as these cells may regulate the ionic composition and concentrations of the bone extracellular fluid (ECF) in vivo, the modulation of their activities by cortisol and fluoride may result in altered bone ECF composition. This work was supported by Grant NAG-2-108 from the National Aeronautics and Space Administration, D.C., and Grant PO1 NS15767 from the National Institute of Neurological and Communicative Disorders and Stroke, Bethesda, MD.  相似文献   

7.
Viridibacillus arenosi strain IHB B 7171 identified based on 16S rRNA gene sequence produced colony forming units (cfu/ml) ranging from 3.3 × 104 to 1.2 × 1010 under pH 5–11, 2.2 × 102 to 1.4 × 1010 for temperature 5–40 °C, 2.4 × 102 to 1.1 × 1010 for PEG 6000 10–30%, 2.2 × 102 to 1.4 × 1010 for 2.5–10% NaCl, 3.1 × 103 to 1.7 × 109 for 2.5–7.5 mM CaCl2, 2.2 × 102 to 1.4 × 107 for 2.5–7.5 mM AlCl3, and 3.2 × 102 to 1.2 × 107 for 2.5–7.5 mM FeCl3. The activities of plant growth-promoting attributes with the increasing acidity, desiccation and salinity ranged from 408 to 101, 20 to 8, 14 to 5 µg/ml P-liberated from tri-calcium phosphate, aluminium phosphate and iron phosphate, 20–9% siderophore units, 14–4 µg/ml IAA and 190–16 α-ketobutyrate h/mg protein ACC-deaminase activity. Plant height, leaf number, and leaf weight on treatment with bacterial inoculum showed an increment of 9.5, 17.6, 54.5 and 31.0% in tea seedlings, respectively. The bacterium also enhanced plant height and yield by 10 and 13% in pea and 2.8 and 13.9% in wheat. The results exhibited stress-tolerance and plant growth-promoting activities by the strain under stressed growth-conditions with potential as a broad-spectrum plant growth-promoting rhizobacterium.  相似文献   

8.
The objectives of this study were to determine the effects of elevated CO2 on relationships between leaf area (A) and linear leaf dimensions (length [L] and width [W]) and leaf dry weight (M) in soybeans (Glycine max (L.) Merr. cv. Bragg). Based on dimensional measurements made on trifoliolates 1–6 for plants grown under three CO2 levels (348, 502 and 645 μl l−-1), the best predictor for both trifoliolate leaf area and for fully expanded central leaflets of the trifoliolates was an equation of the form A = bo + b1L·W; these relationships were unaffected by CO2, although there was a small effect of leaf position. For expanding central leaflets of the fifth trifoliolate, no CO2, leaf size (age) or CO2 × leaf size effect was found. Specific leaf weight (i.e., M/A) was significantly affected by CO2, increasing with increasing CO2. Hence, trifoliolate dry weight can be nondestructively estimated from trifoliolate area using the equation M = 0.097 + (6.71 × 10−-3 + 1.04 × 10−-6[CO2])A, where [CO2] is mean daytime CO2 concentration of the growth environment.  相似文献   

9.
This study was performed to evaluate the effective concentration of the anaesthetic 2‐phenoxyethanol (2‐PE) on juvenile (1.3 ± 0.03 g) meagre (Argyrosomus regius, Asso, 1801) and establish the LC50 (through a series of exposure concentrations) and LT50 of 2‐PE at 20 ± 0.5°C, salinity 38 g × L?1, pH 8.2–8.4 and dissolved oxygen >7 mg × L?1. The induction time decreased and the recovery time increased with increasing concentrations. Conflicting results were found only in recovery time and there were no significant differences among the recovery times from all concentrations. The most suitable concentration of 2‐PE was 0.3 ml × L?1 for about or over 15 min exposure time. The LC50 and LT50 for the 3–60 min exposure periods were estimated for juvenile meagre. The toxic effect of 2‐PE on survival rates of A. regius juveniles increased depending on the exposure period. In addition, 2‐phenoxyethanol LT50 (median survival time) values, slope function (S) and lower and upper 95% confidence limits were estimated.  相似文献   

10.
Copper (II) accumulation has been investigated in the green alga Scenedesmus subspicatus G. Brinkmann considering both adsorption and uptake kinetics. Experiments were conducted in a Cu- and PH-buffered medium at different free Cu2+ concentrations that were neither growth limiting nor toxic. We distinguished between adsorption on the cell surface and intracellular uptake by extracting copper from the cells with EDTA. Data from short-term experiments were compared with data obtained from experiments under steady state conditions. The accumulation of Cu can be described by two processes, an initial fast adsorption occurring within a minute followed by a slower intracellular uptake. Metal uptake followed Michaelis-Menten kinetics and is mediated by two systems, one with low and the other with high affinity. The maximum uptake rates (1.30 × 10?-10 mol·[g dry wt algae]?1· min?1, 3.67 × 10?-9 mol·[g dry wt algae]?1·min?1), and the half-saturation constants (6.84 × 10?-14 M, 2.82 × 10?-12 M) for the two uptake systems were determined using the Lineweaver-Burk plot. The calculated maximum concentration of binding sites on the surface of the algae is initially higher (9.0 × 10?-6 mol Cu.[g dry wt algae]?1) than under steady state conditions (2.9 × 10?-6 mol Cu·[g dry wt algae]?1). This suggests that the initial binding to the algal surface comprises the binding to specific transport ligands as well as to inert adsorption sites. The conditional stability constant of the Cu binding to surface ligands was calculated as log KCu= 11.0 at pH 7.9. This freshwater alga has a high ability to accumulate Cu, reflecting its adaptation to the bioavailable concentration of copper.  相似文献   

11.
The inotropic responses to prostaglandins (PG) A1, E1, E2 and F were studied in isolated cat myocardial tissue. PGA1 and F exhibited no significant inotropic effects, whereas, PGE2 and PGE1 produced negative inotropic effects at concentrations of 2.8 × 10−7 and 2.8 × 10−6 M in isolated cat papillary muscles.In isolated perfused cat hearts, PGE1 (2.8 × 10−6M) produced a negative inotropic effect along with a significant increase in coronary flow. As flow declined, the negative inotropic effect became more severe. PGE1 at 2.8 × 10−9 M produced a sustained increase in coronary flow and oxygen consumption with no inotropic effect. PGE2 and F did not exert significant changes in coronary flow or contractile force.Thus prostaglandins do not appear to exert significant positive inotropic effects at physiologic or at generally accepted pharmacologic concentrations in isolated cat heart preparations. At extremely high concentrations, prostaglandins E1 and E2 exert a negative inotropic effect; however, this would not explain the protective effect of these prostaglandins in circulatory shock.  相似文献   

12.
《Free radical research》2013,47(1):205-210
Using the direct method of pulse radiolysis to determine the superoxide dismutase like activity of copper(II) cimetidine complexes, it was found that the reaction rate constant with O?2, kcat, was (8.5 ± 0.5) × 108 M?1s?1 independent of the cimetidine concentrations present in excess of 50–200 μM over the metal. The results suggest that either the 1:1 ligand to metal complex does not catalyze O?2 dismutation at a comparable rate to that of the 2:1 complex, or that the stability constant of the last species is much higher than that determined earlier by Kimura el al.,1 and only the 2:1 species is present in the solutions. With the indirect methods of cytochrome c and NBT for determining the ability of these complexes to catalyze O?2 dismutation, these compounds exhibited a much lower SOD activity. and kcat was determined to be (5.0 ± 0.3) × 106 and (7.± 0.4) × 101 M?1s?1. respectively using the two assays.  相似文献   

13.
Radial oxygen loss (ROL) from the roots of two semiaquatic rushes, Juncus effusus L. and Juncus inflexus L., was studied in reducing titanium citrate buffer, using both closed incubations and a flow-through, titrimetric system. In closed experiments, roots released oxygen at a constant rate over a wide range of external oxygen demands, with the ROL rate only depending on sink strength at low demands, and no oxygen release into oxidized solutions. In the titrimetric experiments, roots continued to release oxygen at constant rates when provided with a constant external oxygen demand. ROL was higher in J. effusus (9·5 ± 1 × 10?7 mol O2 h?1 root?1) than in J. inflexus (4·5 ± 0·5 × 10?7 mol O2 h?1 root?1). Light and dark changes around the shoots did not affect the ROL rate in J. inflexus, whereas in J. effusus ROL was ≈ 1·75 times higher in the light than in the dark, presumably due to changes in stomatal aperture. These results suggest that ROL is controlled by the external oxygen demand at low to moderate reducing intensities, but that structural limitations to oxygen diffusion rates prevent ROL from continuing to increase at higher external oxygen demands.  相似文献   

14.
This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol–O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10−7 to 1.00 × 10−3 mol L−1, 1.00 × 10−7 to 1.00 × 10−4 mol L−1, and 4.00 × 10−6 to 2.00 × 10−4 mol L−1 with detection limits (3σ) of 3.54 × 10−7, 1.08 × 10−8, and 2.63 × 10−6 mol L−1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.  相似文献   

15.
Glutamate-NAD oxidoreductase, E.C. 1.4.1.3 (GDH), from seedlings of Beta vulgaris cv. Rota, Jahnsch Peragis Comp., was enzymatically characterized. This enzyme with molecular weight of 2.6 × 105 has a pH optimum of around 8 for animation of α-KGA and around 9.5 for the desamination of glutamate. The apparent Km for α-KGA is 6.7 × 10?4M, for NH3 2.5 × 10?3M, for NADH 3.2 × 10?5M and for NAADPH 5.5 × 10?4M. NAD1 inhibits the reaction non-competitively when NADPH serves as substrate. The apparent K1 is 4.5 × 10?4M. The data are discussed on relation to the properties of GDH from other plant sources.  相似文献   

16.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The short term uptake of phosphate involving 10 min absorption followed by 5 min desorption, both at 30 °C, in the concentration range 1.0×10?9 to 7.5×10?2 M KH2PO4 by fresh and washed maize (Zea mays L. cv. Ganga Safed-2) roots can be described by a single isotherm having five phases (0 and I–IV) with regularly spaced kinetic constants. Almost identical kinetics were observed in both fresh and washed maize roots. The kinetics of phase 0 in the concentration range 1.0×10?9–3.0×10?5 M. was sigmoidal in fresh maize roots, however, in washed tissue exhibited 2 phases termed here as 0a and 0b. 0a covered the concentration range 1.0×10?9–5.0×10?6 M and 0b 6.0×10?6–3.0×10?5 M. In the concentration range 1.0×10?4–7.5×10?2 M four distinct phases, termed as I, II, III and IV were evident in both fresh and washed maize roots. Each phase obeyed Michaelis—Menten kinetics. The values of Km and Vmax have been estimated for each phase. The uptake isotherm was accompanied by discontinuous transitions.  相似文献   

18.
Intrinsic promiscuity in cowpea and bean enables plants to nodulate with native rhizobia, though sometimes ineffective rhizobia may occupy nodules, resulting in poor response to inoculation. Field trials were conducted from 2014 to 2017 in Marondera, Natural Region II, Zimbabwe, to determine the effect of increasing inoculation rates on legume growth parameters, nitrogen uptake and grain productivity. Treatments included an un-inoculated control and inoculant rates of ×1 (standard), ×2, ×3, ×4, ×5, ×7 and ×10 for both cowpea (rhizobia - inoculant-strain-MAR 1510) and bean (rhizobia-inoculant-strain-CIAT 899). Biomass productivity ranged from 2.05 (×2) - 2.94 t ha?1 (×4) and 1.10 (×10) – 1.95 t ha?1 (×4) for cowpea and bean, respectively. Nitrogen uptake increased with increasing inoculation rates reaching up to 57.56 kg N ha?1 for bean (×4) and 100.20 kg N ha?1 for cowpea (×3). The uninoculated control was not significantly different from the standard, {(×1); 1 g inoculant 500 g seed?1} treatment, for cowpea nodule weight and grain productivity. The highest cowpea and bean nodule weights were recorded from the ×3 and ×4 treatments, respectively, in the first season. Cowpea grain yield significantly varied across treatments, ranging between 0.63 and 1.55 t ha?1 with the ×3 recording the highest yield. The “×4” treatment recorded the highest bean grain productivity reaching up to 0.88 t ha?1. It can be concluded that, increasing rhizobia cells concentration per unit seed up to ×3 (cowpea) and ×4 (bean) improves response to inoculation and grain productivity suggesting a need to change product formulation or increase inoculation rate.  相似文献   

19.
Pulse radiolytic studies of α-tocopherol (αTH) oxidation-reduction processes were carried out with low doses (5 Gy) of high-energy electrons in O2−, N2−, and air-saturated ethanolic solutions. Depending on the concentration of oxygen in solution, two different radicals, A· and B·, were observed. The first, A·, was obtained under N2 and results from aTH reaction with solvated electron (kaTH+csolv = 3.4 × 108 mol−1 liter s−1) and with H3C-ĊH-OH, (R·) (kaTH + R· = 5 × 105 mol−1 liter s−1). B·, observed under O2, is produced by αTH reaction with RO2 peroxyl radicals (kaTH + RO2. = 9.5 × 104 mol−1 liter s−1).  相似文献   

20.
The reduction of methemerythrin (Hr+) by dithionite produces deoxyhemerythrin (Hro) in multi, possibly three, stages. The kinetics were examined at pH 8·2 and 25 °C. The first stage is reduction of methemerythrin to an intermediate A by SO2- (k = 1.3 × 105m?1s?1). The much slower second and third stages have rates independent of dithionite concentrations. Reaction is completed after about 10 h. The kinetics of reactions of A with N3-, H2O2, and O2 were examined, as well as the conversion of A to intermediate B (k = 4·4 × 10?4s?1). It is concluded that A is an (Fe(II)Fe(III))8 species, and that in B the unit (Fe(II)Fe(II))8 is well developed, judging by its unreactivity towards N3?, its reaction with H2O2, and its reversible uptake of O2 (85–90% of the final product). There is little effect of adjusting the pH to 6·3 on the rates of the processes examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号