首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organization of isolated embryo sacs and eggs of Plumbago zeylanica was described before and after fertilization using microscopic cytochemistry and scanning electron microscopy. Major developmental events of fertilization, including preferential fertilization and early embryogenesis, are described in isolated embryo sacs. The two sperms, one unassociated with vegetative nucleus (Sua) and the other physically associated with the vegetative nucleus (Svn), fuse with nuclei of egg and central cell, respectively. The zygote divides asymmetrically to form a two-celled embryo, consisting of a massive suspensor occupying most of the micropylar portion of the embryo during early embryogenesis. Plastids are distributed in the perinuclear and micropylar regions of the egg cell and in cytoplasmic strands of the central cell before fertilization. Calcofluor white-positive fibrillar material in the filiform apparatus (presumed β-1,4 linked glucans) was investigated using scanning electron microscopy. The egg of P. zeylanica can easily be divided into three cytologically distinct regions: 1) perinuclear cytoplasm, 2) lateral cytoplasm, and 3) micropylar cytoplasm. Cytological differences are evident in the organization of the cell walls, general degree of vacuolization, and the distribution of heritable organelles, storage bodies, and microtubules. The present study supports the concept that the egg of P. zeylanica plays combined synergid and gamete functions.  相似文献   

2.
Structure of the embryo sac and development of the proembryo of Acer saccharinum L. are described from paraffin sections. The embryo sac is monosporic and identical to the 8-nucleate Polygonum type in all respects. Cell, nuclear, and nucleolar sizes are constant within a narrow range and sharply distinctive for all components of the mature sac. Polar nuclei fuse before double fertilization. The longitudinal axis of symmetry of the egg, zygote, and proembryo is variously oriented with respect to the longitudinal axis of the embryo sac and is determined by the point of attachment of the presumptive egg cell to the sac wall. Subsequent development of the young embryo is responsive to aligning factors within the embryo sac and is collateral with the longitudinal axis of the sac. The first segmentation is transverse to the longitudinal axis of the zygote; the second and third are transverse in the basal cell and longitudinal in the apical cell. Descendants of ci form a short irregular suspensor; ca and m give rise to the apical and basal halves respectively of the embryo proper. The contribution of the proembryonic tiers to the older embryo differs in embryos of different initial orientation. Distribution and orientation of mitosis in the proembryo are shown in two accumulation maps.  相似文献   

3.
向日葵胚囊的超微结构和雌性生殖单位问题   总被引:6,自引:0,他引:6  
本文对向日葵胚囊中卵细胞、助细胞与中央细胞开花前和传粉后的超微结构变化进行了研究。着重报道了不同发育时期这三种细胞之间特定区域的界壁的消长动态。在此基础上结合现有文献资料探讨了由三者共同组成“雌性生殖单位”以适应受精作用的问题。  相似文献   

4.
Summary The present investigation deals with some of the organizational and histochemical aspects of the embryo sac ofScilla sibirica. Both the synergids and egg cell are invested by PAS-positive complete walls. The filiform apparatus comprises an elaborate system of fibrillar projections, showing extensive ramifications. The micropylar region of the embryo sac wall from where the filiform apparatus originates is composed of three distinct layers. On a histochemical basis it may be surmised that, unlike the egg cell, the synergids are metabolically very active. Two kinds of wall ingrowths (i) massive and highly branched very much akin to the filiform apparatus, and (ii) small tuberculate wall projections, are unique to the antipodal cells of S.sibirica. Small tuberculate projections have also been observed along the wall of the central cell adjacent to the nutrient-rich nucellar cells. The antipodals and the central cell show the presence of starch grains and abundant total proteins. All the cell types in the embryo sac ofS. sibirica are structurally so organized as to meet the requirements of its nutrition during pre- and postfertilization development. The presence of abundant PAS-positive granular substance in the cells of nucellar epidermis probably establishes a gradient which assists in the pollen tube growth.  相似文献   

5.
As part of a study involving pod retention in soybean, Glycinemax (L.) Merr., we investigated changes occurring in the eggapparatus of non-abscised flowers from the time immediatelypreceding fertilization through early embryogeny. Prior to theentry of the pollen tube into the embryo sac, one of the synergidsbegins to degenerate as evidenced by increased electron densityand a loss of volume. This cell serves as the site of entryfor the pollen tube. The cytoplasm of the second, or persistentsynergid, remains unaltered until after fertilization. Bothsynergids contain, in addition to a filiform apparatus, a singleunidentified inclusion of flocculent material located in thechalazal portion of each cell. The zygote can be distinguishedfrom the egg by its consistently narrow wall; and it dividesto form a proembryo, a mass of cells not yet differentiatedinto embryo proper and suspensor. The basal cells of the proembryoare more vacuolate than the apical ones, characteristic of thebasal vacuolation of both egg and zygote. Cells of the proembryoare connected to one another via plasmodesmata, and with theexception of the basal-most cell, are isolated symplasticallyfrom the surrounding endosperm. Wall ingrowths frequently occurin certain cells of the proembryo, notably those cells in contactwith the degenerate synergid and embryo sac wall. At a laterstage of ontogeny, by which time the globular embryo properhas become distinct from the suspensor, the wall ingrowths areconcentrated in the suspensor. Glycine max, soybean, embryogeny, synergids  相似文献   

6.
天竺葵雌性生殖单位的超微结构   总被引:4,自引:0,他引:4  
应用透射电镜研究了临近受精时天竺葵(Pelargonium hortorum Bailey)胚囊中的卵细胞、助细胞和中央细胞的结构。证明了卵细胞与助细胞以及助细胞与助细胞之间从合点端至珠孔端有很大的面积以质膜分界,仅珠孔端少部分以壁分隔。卵细胞与中央细胞之间同样缺乏细胞壁。在卵细胞的合点端,两质膜不同程度地分离形成宽窄相间的间隙。在间隙的絮状基质中存在小泡,这些小泡的产生似与卵和中央细胞中周质内质网的活动有关。推测小泡为多糖性质,可能为合子新壁的建造提供物质。卵细胞质中含巨大线粒体,质体和内质网也较丰富。基于超微结构的特征,可认为卵细胞具高度的生理合成活动的潜能。中央细胞极核位于珠孔端与卵器细胞毗邻,有利于在双受精作用中同时发生精细胞与卵细胞和精细胞与中央细胞核的融合。中央细胞的侧壁在珠孔端形成内突,具传递细胞的特点,表明这是雌配子体向孢子体摄取营养的重要部位。助细胞的细胞质含丰富的细胞器,这与多数植物中的相似,但具几个明显的特征,即核中存在微核仁,内质网形成圆球体或脂体,线粒体富集在丝状器的附近。传粉后花粉管进入胚囊之前,两个助细胞中一个退化。  相似文献   

7.
Sargassum muticum (Yendo) Fensholt is an invasive species that is firmly established on intertidal and subtidal rocky shores of Europe and the Pacific coast of North America. Local success and spread of S. muticum is thought to rely on its reproductive potential that seems dependent on exogenous factors like tidal and lunar cycles. This study is the first to compare the reproductive patterns (periodicity of egg expulsion and embryo settlement) of this invader in two different habitats: the middle and low intertidal. The combination of monthly, daily, and tidal samples at triplicate sites within each habitat showed a semilunar periodicity of egg expulsion and embryo settlement coincident with increasing tidal amplitude just before full and new moons. In both habitats, duration of each egg expulsion event was ~1 week, and embryo settlement occurred during the first daily low tide and with the incoming high tide during spring tides. However, both expulsion and settlement started 1–2 d earlier, expulsion saturation was faster, and settlement was higher in the mid‐ compared to the low intertidal. Our results suggest that the exact timing of gamete expulsion and embryo release of S. muticum responds to local factors, including tidal cues, which result in differences between mid‐ and low‐intertidal habitats.  相似文献   

8.
The nucellar ultrastructure of apomictic Panicum maximum was analyzed during the meiocytic stage and during aposporous embryo sac formation. At pachytene the megameiocyte shows a random cell organelle distribution and sometimes only an incomplete micropylar callose wall. The chalazal nucellar cells are meristematic until the tetrad stage. They can turn into initial cells of aposporous embryo sacs. The aposporous initials can be recognized by their increased cell size, large nucleus, and the presence of many vesicles. The cell wall is thin with few plasmodesmata. If only a sexual embryo sac is formed, the nucellar cells retain their meristematic character. The aposporous initial cell is somewhat comparable to a vacuolated functional megaspore. It shows large vacuoles around the central nucleus and is surrounded by a thick cell wall without plasmodesmata. In the mature aposporous embryo sac the structure of the cells of the egg apparatus is similar to each other. In the chalazal part of the egg apparatus the cell walls are thin and do not hamper the transfer of sperm cells. Structural and functional aspects of nucellar cell differentiation and aposporous and sexual embryo sac development are discussed.  相似文献   

9.
Summary During the course of a fluorescence microscopic investigation on the extra-ovular micropylar portion of the embryo sacs ofTorenia fournieri Lind. (Scrophulariaceae) a callosic wall was found which surrounded it almost completely until the time of anthesis. In addition, the walls of young synergids and the filiform apparatus also showed callosic fluorescence. Treatments with PAS reaction revealed a PAS-positive substance filling up the locular cavity. Our attempts to induce fluorochromasia by employing fluorescein diacetate failed, indicating the low permeability of the callosic wall around the embryo sac. It is assumed that the callose wall around the embryo sac isolates the latter from the contents of the locular cavity whereas the callose in the synergid walls may represent an intermediate stage in the maturation of these walls; the filiform apparatus is mainly composed of callose.  相似文献   

10.
Microsporogenesis and embryology of the monotypic Zippelia (Z. begoniaefolia) Blume (Piperaceae) is described for the first time to assess its systematic relationships. The formation of the anther wall is of Basic Type such that the anther wall, consisting of an endothecium with fibrous thickenings, two middle layers, and a glandular septum with 2‐nucleate cells, is derived from a primary parietal layer. Simultaneous cytokinesis follows meiosis of the microspore mother cell thence forming a tetrahedral tetrad of microspores. The single basal ovule is orthotropous, crassinucellate and bitegmic but only the inner integument forms the micropyle. The sporogenous cell of the nucellus functions directly as a megaspore mother cell. A coenocyte with four nuclei forms after meiosis of the megaspore mother cell. The formation of the embryo sac is tetrasporic ab initio and is of, or similar to, the Drusa Type of embryo sac in which the nuclei of the coenocyte undergo two successive mitoses and forms a 16‐celled or 16‐nucleate embryo sac that is ovoid in shape. The embryo sac has an egg apparatus consisting of an egg cell and two synergids (but one of the latter is less discernable). Two polar cells occur just beneath the egg apparatus and 11 antipodal cells or nuclei are arranged along the lower part of the inner wall of the embryo sac. They are linked by threads of cytoplasm. The two polar cells are separated or fused before fertilization. A large primary endosperm nucleus with many nucleoli, which resulted from the fertilized polar cells and with the participation of antipodal cells, divides into a free nuclei stage. The free nuclei are arranged along the lower part of the inner wall of the embryo sac or rarely assemble at the central part. The development of endosperm is thus of the Nuclear Type. The zygote remains undivided and fails to develop even when the seed is nearly mature. Frequently, the zygote and the endosperm abort later and leave an empty chamber in the top part of the seed. Most of the seed content is starchy perisperm. Only the inner integument forms the seed coat and the pericarp develops glochidiate hairs (anchor‐like hairs) when the endosperm begins to develop. By comparison with the other piperaceous taxa using embryological and botanical features, Zippelia is referred to as a basal taxon and a more isolated evolutionary line or a blind branch in the Piperaceae. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 49–64.  相似文献   

11.
Summary Living embryo sacs and megagametophytic cells of Nicotiana alata and Nicotiana tabacum were obtained using enzymatic maceration and microdissection. The yields of isolated embryo sacs, egg apparatus and central cells were up to 35%, 40% and 35%, respectively. Vectorial movement of organelles and undulations of tubular structures, presumably endoplasmic reticulum, were observed in eggs, synergids and central cells using video-enhanced microscopy. Despite evident viability using the fluorochromatic reaction, the egg displays much less organelle movement and therefore appears to be quiescent. The large vacuole of the central cell is traversed by mobile strands of cytoplasm through which organelles migrate. A polygonal network is located at the periphery of the central cell, which may contribute to anchorage of the cell with the embryo-sac wall. The observation of organelle movement provides direct evidence of the condition of the cell and may be a useful approach for assessing cell vigor.  相似文献   

12.
Unfertilized mature ovules of Brassica L. contain an abundance of starch in the integument cells from the micropyle to a plane approximately at the level of the central cell polar nuclei. Inside the embryo sac central cell, in the coinciding region, there are transfer cell-like wall projections with plasma membranes appressed to their inner surfaces. H+-ATPase is present along the inner surfaces of the wall projections as indicated by reactivity with antibody raised against plasma membrane H+-ATPase. A number of mitochondria are in close association with wall projections in the region of the egg apparatus. Antibody raised against corn plasma membrane H+-ATPase cross reacts with a protein of the same size in extracts of Brassica napus indicating that the two species contain a similar plasma membrane H+-ATPase.  相似文献   

13.
Using a combination of laboratory and field investigations, this study examined embryo mortality in the southern calamary Sepioteuthis australis as a function of egg mass size, the substrate upon which the mass is attached, the position of the embryo within the mass, and the degree of biofouling. Egg mass size ranged from 2 to 1,241 egg strands, however most masses consisted of 200–299 strands. Small egg masses (<300 strands) were generally attached to soft-sediment vegetation (Amphibolis antarctica, Heterozostera tasmanica, Caulerpa sp.), whereas larger masses (>300 strands) were either securely attached to robust macroalgae holdfasts (Ecklonia sp., Marcocystis pyrifera, Sargassum sp.) or unattached. Rates of embryo mortality were highly variable ranging from 2 to 25%. Both laboratory and field results indicated a positive relationship between egg mass size and embryo mortality. Larger, unattached egg masses contained twice as many dead embryos than those securely attached to a substrate. Mortality rates were significantly affected by the embryos’ relative position within the mass and were highest in embryos located near the attachment point of the egg strand, within the interior of the mass, and in close contact with the substrate. This was attributed to the inability of the embryos to respire adequately and eliminate metabolic wastes. Biofouling did not strongly influence embryo mortality, but colonisation occurred in areas conducive to growth, photosynthesis, and respiration indicating ‘healthy’ regions within the mass.  相似文献   

14.
Intermorph differences in the wall structure and constituents of stigmatic papillae are described for distylous Linum pubescens and L. grandiflorum. In the long-styled morph of both species the wall portion around the apex of the papilla has a thickened cellulose-pectin layer. In the short-styled morph of L. pubescens a cap zone is interposed between the cuticle and apical portion of the papilla wall. The subcuticular cap space contains pectins and lipid particles. Similar particles are also present in deposits on the cuticle surface. Papillae of the short-styled morph in L. grandiflorum lack a cap zone and have only epicuticular lipid deposits. Other distylous Linum species in which the two morphs differ in wall structure of the papillae are L. mucronatum, L. flavum, L. perenne, L. austriacum, and L. maritimum. Studies of stigma dimorphism can help to elucidate evolutionary relations between dimorphic and monomorphic Linum species.  相似文献   

15.
Amaranthus hypochondriacus embryo sac development was investigatedbefore and after fertilization. During the early stages of development,the young embryo sac displays three antipodal cells at the chalazalpole that degenerate very early in the maturation process, beforethe synergids and egg cell are completely differentiated. Themature embryo sac is composed only of the female germ unit.The synergid cells organize a filiform apparatus accompaniedby the presence of mitochondria and dictyosomes with numerousvesicles. The involvement of the synergids in transport andsecretory functions related to pollen tube attraction and guidance,are discussed. The egg cell is located at the micropylar polenear the synergids and displays exposed plasma membranes atthe chalazal pole. The fertilized egg cell does not exhibitmarked changes after fertilization except for the closure ofthe cell wall. The central cell is the largest cell of thisvery long embryo sac. The fused nucleus is close to the eggapparatus before fertilization and displays a remarkable chalazalmigration after gamete delivery. The ultrastructure of the centralcell cytoplasm and the numerous wall ingrowths around this cellsuggest an important role in nutrient transportation. Aftergamete delivery, the embryo sac displays electron dense bodiesthat aggregate within the intercellular space between the synergids,egg cell and central cell. These bodies, that appear in theembryo sac of several plants, are probably involved in gametedelivery for double fertilization. The possibility of biparentalinheritance of mitochondria in this plant is also discussed.Copyright 1999 Annals of Botany Company Amaranthus hypochondriacus, grain amaranth, embryo sac, fertilization.  相似文献   

16.
Concealed development of many animal embryos prevents examination of development and limits the application of embryo manipulation techniques aimed at understanding developmental processes. In embryos developing in utero, such as in mammals, it is necessary to dissect embryos from the mother and, upon manipulative intervention, to implant them back into the recipient. Parasitic wasps present a promising system for understanding the evolution of early developmental processes. In basal ectoparasitic species that lay eggs on the surface of the host, it is possible to adapt embryo manipulation techniques developed in Drosophila. However, their derived endoparasitic relatives, which exhibit various modifications of developmental programs, undergo concealed development within the host body. For example, the parasitic polyembryonic wasp Copidosoma floridanum oviposits an egg into the egg of the host moth Trichoplusia ni. The host larva emerges and the parasite undergoes development within the host body, preventing embryo manipulation as a means of examining developmental regulation. Here we present a protocol for embryo transfer that allows the transplantation of C. floridanum egg into the host egg. This approach opens a new avenue in the application of various embryo manipulation techniques aimed at understanding the evolution of embryogenesis in endoparasitic Hymenoptera. In addition, this approach has potential for the development of other tools in C. floridanum, such as transgenesis and reverse genetics, which can also be extended to other endoparasitic species.  相似文献   

17.
External features of the egg, developing embryo, and first instar nymph of Kamimuria tibialis are described. The embryonic development from the germ disc to the full-grown embryo is divided into 12 stages. The saclike embryonic rudiment is formed by the bending and folding of the germ disc. The embryo first elongates at the egg surface and then sinks into the yolk due to caudal flexure. In the head, four paired protocerebral lobes differentiate and the fourth lobes are thought to be the rudiments of preantennal ganglia. The columnar serosal cells appear at the posterior pole of the egg and they disappear before katatrepsis. The coniform chloride cells occur at the hind margins of the first nine abdominal segments in the full-grown embryo and first instar nymph. Amnion formation in K. tibialis is very similar to that of Allonarcys proteus and the Isoptera. It is proposed that the immersed type of growth pattern of embryos is divided into two subtypes in hemimetabolous insects; one is in the Palaeoptera and Paraneoptera, and the other is in the Plecoptera, Orthoptera, Notoptera, Isoptera, Embioptera, and the blattarian, Periplaneta americana.  相似文献   

18.
Embryonic invasion into the tissue of genetically different organisms has been known only in mother-embryo interactions of viviparous organisms. Hence, embryonic invasions have been thought to occur only within the same or closely related species. For endoparasitic Hymenoptera, which are oviposited in their host egg but complete their development in the later stages, entry into the host embryo is essential. To date, the entry of these parasitoids is known to be accomplished by either egg deposition directly into the embryo or by the newly hatched larva boring into the embryo. However, Copidosoma floridanum is a polyembryonic parasitoid whose development is characterized by a prolonged embryonic stage, and which lacks a larval form during its host embryogenesis. We have analyzed the behavior and fate of C. floridanum embryos co-cultured with their host embryo in vitro. Here, we show that the morula-stage embryo of C. floridanum actively invades the host embryo. Histological analyses have demonstrated that C. floridanum embryonic invasion is associated with adherent junction to host cells rather than causing an obvious wound on the host cells. These findings provide a novel case of embryonic invasion into a phylogenetically distant host embryo, ensuring cellular compatibility with host tissues.  相似文献   

19.
Regulating the morphology and intracellular distribution of mitochondria is essential for embryo development in animals. However, the importance of such regulation is not clearly defined in plants. The evolutionarily conserved Miro proteins are known to be involved in the regulation of mitochondrial morphology and motility. We previously demonstrated that MIRO1, an Arabidopsis thaliana orthologue of the Miro protein, is required for embryogenesis. An insertional mutation in the MIRO1 gene causes arrest of embryonic cell division, leading to abortion of the embryo at an early stage. Here we investigated the role of MIRO1 in the regulation of mitochondrial behaviour in egg cells and early-stage embryos using GFP-labeled mitochondria. Two-photon laser scanning microscopy revealed that, in miro1 mutant egg cells, mitochondria are abnormally enlarged, although egg cell formation is nearly unaffected. After fertilization and subsequent zygotic cell division, the homozygous miro1 mutant two-celled embryo contained a significantly reduced number of mitochondria in its apical cell compared with the wild type, suggesting that the miro1 mutation inhibits proper intracellular distribution of mitochondria, leading to an arrest of embryonic cell division. Our findings suggest that proper mitochondrial morphology and intracellular distribution are maintained by MIRO1 and are vital for embryonic cell division.  相似文献   

20.
The ultrastructural changes which occurred during senescence in the stationary phase of growth of the unicellular green alga Spongiochloris typica were observed. The cell wall consists of a membrane like primary wall and an inner secondary wall which becomes progressively thickened with age of the culture. During senescence the lamellae become more compact within the chloroplast. The major feature of aging is the appearance of lipid bodies which eventually come to occupy a major portion of the cell lumen. The ultrastructural changes observed to occur during senescence are discussed in relation to physiological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号