首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report details the localization of bismuth by energy-dispersive x-ray microanalysis within characteristic nuclear inclusion bodies of renal tubular lining cells of rats following excessive exposure to this element. Peak to background ratios and analytical detection sensitivities for bismuth were found to vary for 04, 60 or 80 keV electron accelerating voltages. Optimum peak to background ratios were observed at 40 keV due to lower background generation, while greater detection sensitivities were recorded at 80 keV due to enhanced generation of bismuth characteristic x-rays.  相似文献   

2.
Assessments of scoliosis are routinely done by means of clinical examination and full spinal x-rays. Multiple exposure to ionization radiation, however, can be hazardous to the child and is costly. Here, we explain the use of a noninvasive imaging technique, based on laser optical scanning, for quantifying the three-dimensional (3D) trunk surface topography that can be used to estimate parameters of 3D deformity of the spine. The laser optical scanning system consisted of four BIRIS laser cameras mounted on a ring moving along a vertical axis, producing a topographical mapping of the entire torso. In conjunction with the laser scans, an accurate 3D reconstruction of the spine and rib cage were developed from the digitized x-ray images. Results from 14 scoliotic patients are reported. The digitized surfaces provided the foundation data to start studying concordance of trunk surface asymmetry and spinal shape in idiopathic scoliosis.  相似文献   

3.
Assessments of scoliosis are routinely done by means of clinical examination and full spinal x-rays. Multiple exposure to ionization radiation, however, can be hazardous to the child and is costly. Here, we explain the use of a noninvasive imaging technique, based on laser optical scanning, for quantifying the three-dimensional (3D) trunk surface topography that can be used to estimate parameters of 3D deformity of the spine. The laser optical scanning system consisted of four BIRIS laser cameras mounted on a ring moving along a vertical axis, producing a topographical mapping of the entire torso. In conjunction with the laser scans, an accurate 3D reconstruction of the spine and rib cage were developed from the digitized x-ray images. Results from 14 scoliotic patients are reported. The digitized surfaces provided the foundation data to start studying concordance of trunk surface asymmetry and spinal shape in idiopathic scoliosis.  相似文献   

4.
High-resolution x-ray microscopy is a relatively new technique and is performed mostly at a few large synchrotron x-ray sources that use exposure times of seconds. We utilized a bench-top source of single-shot laser (ns) plasma to generate x-rays similar to synchrotron facilities. A 5 microlitres suspension of Escherichia coli ATCC 25922 in 0.9% phosphate buffered saline was placed on polymethylmethyacrylate coated photoresist, covered with a thin (100 nm) SiN window and positioned in a vacuum chamber close to the x-ray source. The emission spectrum was tuned for optimal absorption by carbon-rich material. Atomic force microscope scans provided a surface and topographical image of differential x-ray absorption corresponding to specimen properties. By using this technique we observed a distinct layer around whole cells, possibly representing the Gram-negative envelope, darker stained areas inside the cell corresponding to chromosomal DNA as seen by thin section electron microscopy, and dent(s) midway through one cell, and 1/3- and 2/3-lengths in another cell, possibly representing one or more division septa. This quick and high resolution with depth-of-field microscopy technique is unmatched to image live hydrated ultrastructure, and has much potential for application in the study of fragile biological specimens.  相似文献   

5.
BACKGROUND: Improving our knowledge of plant metal metabolism is facilitated by the use of analytical techniques to map the distribution of elements in tissues. One such technique is X-ray fluorescence (XRF), which has been used previously to map metal distribution in both two and three dimensions. One of the difficulties of mapping metal distribution in two dimensions is that it can be difficult to normalize for tissue thickness. When mapping metal distribution in three dimensions, the time required to collect the data can become a major constraint. In this article a compromise is suggested between two- and three-dimensional mapping using multi-angle XRF imaging. METHODS: A synchrotron-based XRF microprobe was used to map the distribution of K, Ca, Mn, Fe, Ni, Cu and Zn in whole Arabidopsis thaliana seeds. Relative concentrations of each element were determined by measuring fluorescence emitted from a 10 microm excitation beam at 13 keV. XRF spectra were collected from an array of points with 25 or 30 microm steps. Maps were recorded at 0 and 90 degrees , or at 0, 60 and 120 degrees for each seed. Using these data, circular or ellipsoidal cross-sections were modelled, and from these an apparent pathlength for the excitation beam was calculated to normalize the data. Elemental distribution was mapped in seeds from ecotype Columbia-4 plants, as well as the metal accumulation mutants manganese accumulator 1 (man1) and nicotianamine synthetase (nasx). CONCLUSIONS: Multi-angle XRF imaging will be useful for mapping elemental distribution in plant tissues. It offers a compromise between two- and three-dimensional XRF mapping, as far as collection times, image resolution and ease of visualization. It is also complementary to other metal-mapping techniques. Mn, Fe and Cu had tissue-specific accumulation patterns. Metal accumulation patterns were different between seeds of the Col-4, man1 and nasx genotypes.  相似文献   

6.
A new imaging modality in electron microscopy uses energy filtration to produce micrographs with elastically scattered electrons or with electrons that have lost a specific, often characteristic amount of energy in interacting with the specimen. No deleterious effects on microscope performance are encountered. Instead, microanalysis of specimens is made possible with a spatial resolution of 3 to 5 A and a sensitivity of detection of 2 X 10(-21) g corresponding to about 50 atoms of phosphorus. Elements detected range from hydrogen (Z = 1) to uranium (Z = 92). Examples of elemental mapping show membrane structure, DNA within nucleosomes, and RNA within ribosomal particles.  相似文献   

7.
Direct determination of crystallographic phases based on probabilistic of sigma 1 and sigma 2 "triplet" structure invariants has been found to be an effective technique for structure analysis with lamellar x-ray or electron diffraction intensity data from phospholipids. In many cases, nearly all phase values are determined, permitting a structure density (electron density for x-ray diffraction; electrostatic potential for electron diffraction) map to be calculated, which is directly interpretable in terms of known bilayer lipid structure. The major source of error is found to be due to the distortion of observed electron diffraction intensity data by incoherent multiple scattering, which can significantly affect the appearance of the electrostatic potential map, but not the success of the phase determination, as long as the observed Patterson function can be interpreted.  相似文献   

8.
Optical mapping is a novel technique for determining the restriction sites on a DNA molecule by directly observing a number of partially digested copies of the molecule under a light microscope. The problem is complicated by uncertainty as to the orientation of the molecules and by erroneous detection of cuts. In this paper we study the problem of constructing a restriction map based on optical mapping data. We give several variants of a polynomial reconstruction algorithm, as well as an algorithm that is exponential in the number of cut sites, and hence is appropriate only for small number of cut sites. We give a simple probabilistic model for data generation and for the errors and prove probabilistic upper and lower bounds on the number of molecules needed by each algorithm in order to obtain a correct map, expressed as a function of the number of cut sites and the error parameters. To the best of our knowledge, this is the first probabilistic analysis of algorithms for the problem. We also provide experimental results confirming that our algorithms are highly effective on simulated data.  相似文献   

9.
The influence of HCl hydrolysis on DNA detection in a Feulgen-type reaction using osmium ammine has been analyzed at the electron microscopic level by means of electron spectroscopic imaging, electron energy loss spectroscopy and X-ray microanalysis in energy dispersive spectroscopy. Both the stained DNA and the phosphorus mapping for a given hydrolysis condition were studied in parallel on the same nucleus. We have found that the pattern of osmium ammine-stained DNA and phosphorus imaging can be superimposed for a short hydrolysis time. After long HCl treatment, DNA is barely detectable by osmium ammine while phosphorus is still present in the thin sections. Taking into account the fact that the cells are embedded in a plastic resin, it is reasonable to think that in this case DNA depolymerization does not completely correspond to DNA loss. An incomplete loss of this highly denatured and depolymerized DNA from the plastic sections will explain both the presence of phosphorus and the poor stainability with a Schiff-type reagent.  相似文献   

10.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has been developed as a new strategy for detection and imaging of β-amyloid protein in immunohistochemical sections from the brains of a transgenic mouse model of Alzheimer’s disease. The distribution of β-amyloid deposits in tissue was based on measurement of Eu- and Ni-coupled antibodies. The laser-based methodologies (spot ablation, single line raster, and two-dimensional imaging) were also used to detect and map trace element distributions and thus provide a novel probe for both elemental and protein data. We also report the combination of laser capture microdissection with LA-ICP-MS as an alternative strategy for microanalysis of immunohistochemical sections.  相似文献   

11.
Adenylyl cyclase-dependent axonal targeting in the olfactory system   总被引:3,自引:0,他引:3  
The vertebrate olfactory bulb is a remarkably organized neuronal structure, in which hundreds of functionally different sensory inputs are organized into a highly stereotyped topographical map. How this wiring is achieved is not yet understood. Here, we show that the olfactory bulb topographical map is modified in adenylyl cyclase 3 (adenylate cyclase 3)-deficient mice. In these mutants, axonal projection targets corresponding to specific odorant receptors are disorganized, are no longer exclusively innervated by functionally identical axonal projections and shift dramatically along the anteroposterior axis of the olfactory bulb. Moreover, the cyclase depletion leads to the prevention of neuropilin 1 (Nrp1) expression in olfactory sensory neuron axonal projections. Taken together, our data point to a major role played by a crucial element of the odorant-induced transduction cascade, adenylyl cyclase 3, in the targeting of olfactory sensory neuron axons towards the brain. This mechanism probably involves the regulation of receptor genes known to be crucial in axonal guidance processes.  相似文献   

12.
L Beese  R Feder    D Sayre 《Biophysical journal》1986,49(1):259-268
Contact x-ray microscopy potentially allows living, wet cells to be visualized at a resolution of up to 100 A. Furthermore, differential absorption by specific elements permits the study of the distribution of those elements in biological specimens. In contact x-ray microscopy, soft x-rays (10 A to 100 A) pass through a biological sample and expose an underlying x-ray sensitive polymer (resist), producing an image that reflects the photon absorbance within the specimen. The high penetrating power of soft x-ray enables images to be obtained from specimens up to several microns thick. In this paper, the technique is described, some of the areas currently under study are considered, and biological examples of the use of contact x-ray microscopy are given.  相似文献   

13.
A relative biological effectiveness (RBE) not much larger than unity is usually assumed for soft x-rays (up to approximately 50 keV) that are applied in diagnostic radiology such as mammography, in conventional radiotherapy and in novel radiotherapy approaches such as x-ray phototherapy. On the other hand, there have been recent claims of an RBE of more than 3 for mammography and respective conventional x-rays. Detailed data on the RBE of soft x-rays, however, are scarce. The aim of the present study was to determine the effect of low-energy x-rays on chromosomal damage in vitro, in terms of micronucleus induction. Experiments were performed with 25 kV x-rays and a 200 kV x-ray reference source. The studies were carried out on primary human epidermal keratinocytes (HEKn), human fibroblasts (HFIB) and NIH/3T3 mouse fibroblasts. Micronucleus (MN) induction was assayed after in vitro irradiation with doses ranging from 1 to 5.2 Gy. Compared to the effect of 200 kV x-rays, 25 kV x-rays resulted in moderately increased chromosomal damage in all cell lines studied. This increase was observed for the percentage of binucleated (BN) cells with micronuclei as well as for the number of micronuclei per BN cell. Moreover, the increased number of micronuclei per micronucleated BN cell in human keratinocytes and 3T3 mouse fibroblasts suggests that soft x-rays induce a different quality of damage. For all cell lines studied the analysis of micronucleus induction by 25 kV soft x-rays compared to 200 kV x-rays resulted in an RBE value of about 1.3. This indicates a somewhat enhanced potential of soft x-rays for induction of genetic effects.  相似文献   

14.
用硅光电池研究设计一种性能最优良,对X射线也很灵敏的并经微电子技术大规模集成化制造,部分粘贴闪烁晶体、造出x线双能量数字平行板探测器,配上相应计算机,并直接与传统x线机组合的数字仪,可实行各种数字式的摄片和透视。  相似文献   

15.
"Nanoimprinting", whereby topographical features are directly imprinted on or in cells, has recently been documented. The mechanism(s) underlying this may explain the cause of cell behavioural alterations as a result of contact with nanotopography. Integrin-mediated cell-substrate adhesions are likely to play a key role in this phenomenon due to their involvement in bidirectional signalling between extra- and intracellular environments. We describe the effects of blocking beta1 and beta3 integrin subunits on the ability of the cytoskeleton to conform to colloidal-derived nanotopography. Scanning electron and atomic force microscopy were used to characterise substrate nanofeatures. Nanofeature circularity was calculated relative to substrate topography and the cytoskeleton of cells cultured on patterned and planar surfaces in the presence/absence of beta1/beta3 integrin antibody. Cross-correlation investigations were similarly conducted by producing a target image relative to individual topographical nanofeatures. This was then compared with cytoskeletal patterning in the presence/absence of beta integrin antibodies. Inhibiting the beta1 subunits increased the ability of fibroblasts to nanoimprint, while inhibiting the beta3 subunit reduced nanoimprinting of the topography to the cell. Fibroblasts cultured on planar substrates also expressed some features sharing similarities with those observed in cells on the nanotopography, indicating an inherent cytoskeletal nanopatterning at high resolution.  相似文献   

16.
We report a novel class of transmission electron microscope (TEM), the difference-contrast electron microscope (DTEM), which displays nanostructures of thin specimen objects in a topographical manner. Topography obtained by the difference-contrast develops shadowgraphs in pseudo three-dimension, namely volume-like representation of projected objects as if things are illuminated by light from one direction. The specific optical device tomanipulate electron waves for DTEM is the hemicircular phase-plate, which appears to be quite distinguishable from the Zernike phase plate utilized in Zernike phase-contrast TEM, while both have to be placed onto the back-focal plane of the objective lens. The topographic images obtained with DTEM for ultrathin sections of kidney cells were compared with those obtained with conventional TEM. DTEM confirmed the experimental advantage of high contrast topography by visualizing ultrastructural details inside the cells.  相似文献   

17.
The localization of calcium in the membrane system of human platelets was determined by ultrahistochemical methods equipped with an electron probe x-ray microanalyzer. After potassium oxalate-glutaraldehyde treatment large amounts of electron opaque precipitates were observed around the membrane of the surface connected system. Electron probe x-ray microanalysis clearly defined that the precipitates were composed of calcium oxalate. The localization of calcium on the membrane of the surface connected system was also confirmed even after treatment of the platelets with potassium antimonate-OsO4. These results support a model which depicts the surface connected membrane system taking part in the store and the transport of calcium.  相似文献   

18.
Photoelectron imaging provides the possibility of a new method of mapping chromosomes. The basic concept is to cause DNA to emit electrons under the action of UV light. The criteria which must be met to map genomes by photoelectron imaging are set forth and discussed. Forming an image of the DNA by accelerating and focusing the electrons is a necessary but not sufficient condition for genome mapping. Equally important is to identify wavelengths of UV light which will cause selective emission from the base pairs, adenine-thymine and guanine-cytosine. The resulting image would then contain a modulation in the image brightness along the DNA duplex. By examining the photoelectron current from uniform films of homopolymers, a wavelength region is identified where marked differences in emission from base pairs is observed. At 160 nm, for example, the relative electron emission from a film of poly(dGdC) is approximately 5 times greater than for an equivalent film of poly(dAdT). Using the experimental data and known sequences, photoelectron gene maps are calculated for the bacteriophage lambda and for a short interspersed repetitive DNA sequence (an Alu repeat) of the human genome. The results suggest that a 5-nm physical map of chromosomes generated by photoelectron imaging would be informative and useful in mapping human and other large genomes.  相似文献   

19.
The x-ray exposure at which significant radiation damage occurs has been quantified for frozen crystals of bacteriorhodopsin. The maximum exposure to approximately 11-keV x-rays that can be tolerated for high-resolution diffraction experiments is found to be approximately 10(10) photons/microm(2), very close to the value predicted from limits that were measured earlier for electron diffraction exposures. Sample heating, which would further reduce the x-ray exposure that could be tolerated, is not expected to be significant unless the x-ray flux density is well above 10(9) photons/s-microm(2). Crystals of bacteriorhodopsin that contain approximately 10(11) unit cells are found to be large enough to give approximately 100 high-resolution diffraction patterns, each covering one degree of rotation. These measurements are used to develop simple rules of thumb for the minimum crystal size that can be used to record x-ray diffraction data from protein microcrystals. For work with very small microcrystals to be realized in practice, however, it is desirable that there be a significant reduction in the level of background scattering. Background reduction can readily be achieved by improved microcollimation of the x-ray beam, and additional gains can be realized by the use of helium rather than nitrogen in the cold gas stream that is used to keep the protein crystals frozen.  相似文献   

20.
Electron crystallography has the potential of yielding structural information equivalent to x-ray diffraction. The major difficulty has been preparing specimens with the required structural order and size for diffraction and imaging in the electron microscope. 2D crystallization on phospholipid monolayers is capable of fulfilling both of these requirements. Crystals can form as a result of specific interactions with a protein's ligand or an analog, suitably linked to a lipid tail; or on a surface of complementary head-group charge. With such choices, the availability of a suitable lipid is limited only by synthetic chemistry. Ultimately, it is the quality and regularity of the protein-protein interactions that determine the crystalline order, as it is with any protein crystal. In the case of streptavidin, the monolayer crystal diffracts beyond 2.5 Å. A 3 Å projection map reconstructed from electron diffraction amplitudes and phases from images shows density which can be interpreted as β-sheets and clusters of side chains. It remains to be shown that the monolayer crystals are flat and diffract as well at high tilt angle as untilted. Technological issues such as charging must be resolved. With parallel advances in data collection and processing, electron crystallography of monolayer macromolecular crystals will eventually take its place beside x-ray crystallography and NMR as a routine and efficient structural technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号