首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decomposition of Alnus glutinosa (alder) leaves was studied in a severely (site H4) and a moderately (site H8) heavy metal polluted stream in the former copper shale mining district of Mansfeld, Central Germany. Leaves at H8 had reduced fungal diversity and spore production but a high exponential decay rate (k = 0.065). No further mass loss of leaves occurred at H4 after 4–6 weeks, and fungal diversity and spore production were lower than in H8. Decay and sporulation rates gradually increased to values of H8 control leaves in leaves preincubated in H4 and then transferred to H8. These increases correlated with the invasion of transplanted leaves by Tetracladium marchalianum and Tricladium angulatum. In the reverse transplant experiment (H8 to H4), mass loss appeared to stop immediately. Sporulation rates also declined, but remained consistently above levels in H4 control leaves. Leaves precolonized in the laboratory by one of three aquatic hyphomycete species exhibited increased decay rates in both streams. Sporulation rates on these leaves were greater than those of control leaves in H4, but smaller than those of control leaves in H8. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Abstract: Diurnal changes in starch, sugar and amino acid concentrations in source leaves, sink leaves and roots of tobacco plants were determined. In addition to wild type tobacco, transformed plants deficient in root nitrate reductase and exhibiting decreased rates of growth were employed. Further, the growth rates of tobacco plants were modulated by exposure to elevated pCO2. From the diurnal alterations in metabolite concentrations, the daily turnover of starch and amino N was estimated in order to: (i) elucidate whether turnover rates can be related to growth rates, and (ii) identify individual amino compounds with the potential to indicate nitrogen fluxes and the C/N status of plants. Elevated pCO2 increased growth rates and daily turnover of starch in both wild type and transformed plants, indicating enhanced rates of photosynthesis. In wild type plants, elevated pCO2 increased the turnover of amino N, notably glutamine and alanine, in mature source leaves, indicating enhanced nitrate reduction. By contrast, amino N turnover in source leaves of transformed plants was not affected by elevated pCO2, although nitrate reduction was presumably enhanced. Apparently, export of amino N was increased from the source leaves of transformed plants. This assumption was supported by a significantly increased turnover of amino N in young sink leaves compared to mature source leaves, indicating a preference for acropetal amino N allocation and import into the young leaves of the transformed plants. Further, elevated pCO2 increased the allocation of leaf‐derived amino N to the roots of transformed plants. This led to increased levels of amino compounds during the entire day, notably glutamate, but did not affect root growth of the transformed plants. The suitability of individual amino compounds as markers for major N fluxes, such as nitrate reduction, photorespiration, and amino N export and import is discussed.  相似文献   

3.
The influence of irradiance on photosynthesis under natural conditions was studied in aseasonal Singapore using three Heliconia taxa: H. rostrata, H. psittacorum × H. spathocircinata cv. Golden Torch and H. psittacorum cv. Tay. When grown under full sunlight, all three heliconias exhibited reduced phatosynthetic capacities and lowered chlorophyll content per leaf area as compared with those grown under intermediate and deep shade. A marked decrease in the chlorophyll fluorescence Fv/Fm ratio and an increase in photochemical quenching (1- qp) and non-photochemical quenching (qN) were observed in upper leaves of plants grown under full sunlight. Increases in qN suggest that ‘photoinhibition’ (decreases in Fv/Fm) in Heliconia grown under natural tropical conditions are probably due to photoprotective energy dissipation processes. The quantum yield, the maximum photosynthetic rate, Fv/Fm and the chlorophyll content of upper leaves were lower than those of lower leaves on the same plants grown under full sunlight. Similarly, lower values were obtained for the tip (sun) portion than for the base (shaded) portion of the leaves. The changes in Fv/Fm and in the levels of (1 –qp) in leaves grown under intermediate and deep shade were negligible in plants during the course of day. However, there was a steep decrease in Fv/Fm and an increase in the levels of (1 –qp), along with an increase in incident light in the sun leaves. The lowest Fv/Fm and the highest level of (1 –qp) indicated minimum PSII efficiency at midday in full sun. These results indicate that, in Heliconia, the top leaves (particularly leaf tips) experienced sustained decreases in PSII efficiency upon exposure to full sunlight. Although all three taxa exhibited sustained decreases in photosynthetic capacity in full sunlight, the sun leaves of ‘Tay’ showed higher photosynthetic capacity than those of the other two taxa. This could be due, at least in part, to the vertical leaf angle and smaller lamina area. When the upright leaves of ‘Tay’ were constrained to a horizontal angle, they exhibited lower PSII efficiency (FvIFm ratio), while horizontal leaves of ‘Rostrata’ and ‘Golden Torch’ inclined lo near-vertical angles showed increased efficiency. Thus, an increase in leaf angle helps to achieve a reduction in the sustained decrease in PSII efficiency by decreasing the levels of incident sunlight and subsequently the leaf temperature.  相似文献   

4.
Summary The influence of elevational changes on plant transpiration was evaluated using leaf energy balance equations and well-known elevational changes in the physical parameters that influence water vapor diffusion. Simulated transpirational fluxes for large leaves with low and high stomatal resistances to water vapor diffusion were compared to small leaves with identical stomatal resistances at elevations ranging from sea level to 4 km. The specific influence of various air temperature lapse rates was also tested. Validation of the simulated results was accomplished by comparing actual field measurements taken at a low elevation (300 m) desert site with similar measurements for a high elevation (2,560 m) mountain research site. Close agreement was observed between predicted and measured values of transpiration for the environmental and leaf parameters tested.Substantial increases in solar irradiation and the diffusion coefficient for water vapor in air (D wv) occurred with increasing elevation, while air and leaf temperatures, the water vapor concentration difference between the leaf and air, longwave irradiation, and the thermal conductivity coefficient for heat in air decreased with increasing elevation. These changes resulted in temperatures for sunlit leaves that were further above air temperature at higher elevations, especially for large leaves. For large leaves with low stomatal resistances, transpirational fluxes for low-elevation desert plants were close to those predicted for high-elevation plants even though the sunlit leaf temperatures of these mountain plants were over 10°C cooler. Simulating conditions with a low air temperature lapse rate (0.003° C m-1 and 0.004° C m-1) resulted in predicted transpirational fluxes that were greater than those calculated for the desert site. Transpiration for smaller leaves decreased with elevation for all lapse rates tested (0.003° C m-1 to 0.010° C m-1). However, transpirational fluxes at higher elevations were considerably greater than expected for all leaves, especially larger leaves, due to the strong influence of increased solar heating and a greater D wv. These results are discussed in terms of similarities in leaf structure and plant habit observed among low-elevation desert plants and high-elevation alpine and subalpine plants.  相似文献   

5.
Hesperaloe funifera and H. nocturna are currently being studied as potential new sources of fibers for specialty papers. This study investigated canopy architecture and light interception in H. funifera, and gas exchange in both species. H. funifera is an acaulescent rosette species with stiff, upright leaves. Mean leaf angle for 3-year-old plants was 70° from horizontal, and more than 90% of the leaf surface was at angles greater than 50°. Vertical orientation of leaves reduced seasonal variation in light interception and midday light interception during summer months. High leaf angles are interpreted as an adaptation to arid habitats that could reduce this species' suitability for cultivation in more humid areas. Both H. funifera and H. nocturna had leaf-tissue water contents and mesophyll-succulence values intermediate between previously investigated Agavaceae known to be either C3 or Crassulacean acid metabolism (CAM) plants. Both species proved to have CAM, however. Gas exchange characteristics varied with leaf age, with older leaves having higher assimilation rates, greater water-use efficiency, and a higher proportion of nighttime CO2 uptake. Interestingly, these older leaves had mesophyll succulence values closer to those of typical C3 species. These Hesperaloe species can thus be characterized as nonsucculent CAM plants. Both species showed CO2 uptake rates of 5–8 μmol m-2 sec-1 expressed on a total-surface-area basis and 10–18 μmol m-2 sec-1 expressed on a projected-leaf-area basis. Expanded cultivation of species possessing CAM in marginal areas has been recommended recently; the physiological studies reported here along with previous studies of their economic botany identify these Hesperaloe species as good crop candidates for dry regions.  相似文献   

6.
Thomas W. Jurik 《Oecologia》1991,87(4):539-550
Summary Plots in a naturally occurring population of giant ragweed (Ambrosia trifida L.) near Ames, Iowa, USA were left unthinned (high density,=693 plants/m2) or were thinned in early June 1989 to create low and medium densities of 10 and 50 plants/m2. Size and light environment of individual plants were measured at monthly intervals from June to September. By September, low density plants had 15 times greater biomass/plant and 30 times greater leaf area/plant than high density plants, although biomass and leaf area per unit land area decreased with decreasing density. Plants at high density allocated more biomass to stem growth, but plants at medium and low density had successively higher leaf area ratios, higher potential photosynthetic rates, higher allocation to leaves, and higher growth rates. Average light on leaves decreased with increasing density and also decreased over the growing season in the low and medium densities. The distribution of light environments of individual plants was non-normal and skewed to the left in most months, in contrast to the rightwards skew of distributions of plant size parameters. Inequality in the distributions, as measured by coefficient of variation and Gini coefficients, increased over most of the growing season. There was little effect of density on inequality of stem diameter, height, or estimated dry weight, but inequality in reproductive output greatly increased with density. There was greater inequality in number of staminate flowers produced than in number of pistillate flowers and seeds produced. Path analysis indicated that early plant size was the most important predictor of final plant size and reproductive output; photosynthesis, conductance, and light environment were also significantly correlated with size and reproduction but usually were of minor importance. Variation in growth rate apparently increased inequality in plant size at low density, whereas belowground competition and death of smaller plants may have limited increases in inequality at high density.  相似文献   

7.
D. Wilson 《Planta》1970,91(3):274-278
Summary Leaves from Lolium perenne plants grown at day/night temperatures of 15°/10° had slower rates of apparent photosynthesis at 15° than leaves from plants grown at 25°/20°. Electron microscopy showed a higher starch concentration in chloroplasts from low- compared with the higher temperature-grown plants. However, all differences in apparent photosynthesis were negatively associated with differences in size of mesophyll cells. It is suggested that the presence of starch per se had no effect on photosynthesis rate and that temperature during growth influences subsequent rates because leaves from the higher temperature have smaller cells and chloroplasts than those from the lower one.  相似文献   

8.
9.
The non‐invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, Pp, in response to an externally applied magnetic force. Pp is inversely coupled with leaf turgor pressure, Pc, i.e. at high Pc values the Pp values are small and at low Pc values the Pp values are high. This relationship between Pc and Pp could also be verified for 2‐m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (Pc dropped below ca. 50 kPa), Pp curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum Pp value, and during darkness a peak Pp value is recorded. This reversal of the Pp curves was completely reversible. Upon watering, the original diurnal Pp changes were re‐established within 2–3 days. Olive trees in the field showed a similar turnover of the shape of the Pp curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the Pp curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross‐sections through leaves subjected to prolonged drought. In contrast to well‐watered leaves, microscopic inspection of leaves exhibiting inverse diurnal Pp curves revealed large air‐filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water‐stressed leaves than from well‐watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental Pp curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero Pc.  相似文献   

10.
The photosynthesis of ryegrass leaves grown in a simulated sward   总被引:2,自引:0,他引:2  
Plants were taken from simulated swards of perennial ryegrass (Lolium perenne) grown in a controlled environment and the rates of photosynthesis of the youngest fully expanded leaves, and the second and third youngest leaves on the same tillers were measured. The youngest leaves had the highest rates and the third the lowest, with the second leaves intermediate. The rate of photosynthesis in bright light of successive youngest expanded leaves decreased as the swards increased in leaf area, but did not when plants were grown so that the main stem was not shaded. When plants were grown at different densities and the photosynthetic rates of leaves of a particular ontogenetic rank were measured, it was found that leaves on plants from higher densities had lower rates of photosynthesis. Also leaves on plants grown in bright light had higher photosynthetic rates than those on plants grown in dim light. It is concluded that the decline in the photosynthetic capacity of successive leaves in a rapidly growing simulated sward is due to the intense shading to which they are subjected during their expansion.  相似文献   

11.
The ability to appropriately modify physiological and morphological traits in response to temporal variation should increase fitness. We used recombinant hybrid plants generated by crossing taxa in the Piriqueta caroliniana complex to assess the effects of individual leaf traits and trait plasticities on growth in a temporally variable environment. Recombinant hybrids were used to provide a wide range of trait expression and to allow an assessment of the independent effects of individual traits across a range of genetic backgrounds. Hybrid genotypes were replicated through vegetative propagation and planted in common gardens at Archbold Biological Station in Venus, Florida, where they were monitored for growth, leaf morphological characters, and integrated water use efficiency (WUE) (C isotope ratio; δ13C) for two successive seasons. Under wet conditions only leaf area had significant effects on plant growth, but as conditions became drier, growth rates were greatest in plants with narrow leaves and higher trichome densities. Plants with higher WUE exhibited increased growth during the dry season but not during the wet season. WUE during the dry season was increased for plants with smaller, narrower leaves that had higher trichome densities and increased reflectance. Examination of alternative path models revealed that during the dry season leaf traits had significant effects on plant growth only through their direct effects on WUE, as estimated from δ13C. Over the entire growing season, plants with a greater ability to produce smaller and narrower leaves with higher trichome densities in response to reduced water availability had the greatest growth rate. These findings suggest that plants making appropriate changes to leaf morphology as conditions became dry had increased WUE, and that the ability to adjust leaf phenotypes in response to environmental variation is a mechanism by which plants increase fitness.  相似文献   

12.
Leaf-area development in King Edward potato plants infected with Verticillium albo-atrum and V. dahliae was examined both in plants with a normal growth pattern and in those where maturity had been artificially delayed. Methods are described for producing uniform, single-stemmed, initially disease-free host plants, and for measuring their total and green leaf areas throughout their development. Under both growth conditions the pathogens had no apparent effect upon the initiation of new leaves on the main axis of the plant, but they did influence their subsequent development. During the growing period the pathogens caused stunting, thus preventing the production of the potential maximum leaf area, while at maturity the chlorosis and necrosis of the diseased leaves and their premature fall reduced functional leaf area. In diseased plants in which maturity had been delayed, stunting at the apices was more apparent: internode length, leaf petiolar axis length and leaf area were all smaller than in healthy plants, the greatest reductions being shown in leaf area. Cells in the stunted leaves were fewer and smaller than those in healthy leaves. A direct result of leaf-area reduction was the development of smaller tubers, with consequent reduction in the fresh weight, and some reduction in tuber number. V. albo-atrum invariably proved to be more virulently pathogenic than V. dahliae; the use of an average Verticillium index was shown to be a reliable method for estimating relative virulence since it reflected both leaf area and yield reductions. Delaying host maturity and thus lengthening the period of extension growth conferred some resistance on plants infected with V. dahliae; symptom progression was stopped after its initial expression, and consequently leaf area was increased. This form of resistance was not shown in the plants inoculated with V. albo-atrum.  相似文献   

13.
Overexpression of a cyclin-dependent kinase inhibitor (KRP2) caused changes in the general morphology in the leaves of Arabidopsis thaliana. The wild type plant had obovate leaves with entire margins whereas the transgenic line had leaves with denticulate margins. The epidermal cells and stomata of the adult transgenic leaves were significantly larger than those of the wild-type plants and the number of stomata was in proportion to the number of epidermal cells. No apparent differences in thickness and structure of cell walls of the mesophyll cells between the two samples were observed. The smaller amount of cell wall material in the transgenic leaves caused by the larger cell size was also apparent in the lower dry weight of the transgenic leaves. The chemical analysis revealed the main differences to be in pectin and neutral sugar contents, and especially in the amounts of glucose, all being higher in the leaves of the KRP2 transgenic plants. p-Coumaric acid content varied more in the transgenic leaf material than in the control one reflecting possibly fewer cross-links in the cell walls of transgenic plants.  相似文献   

14.
We report the effects of the root hemiparasite Striga hermonthica (Del.) Benth. on the growth and photosynthesis of two cultivars of sorghum: CSH-1, a susceptible variety, and Ochuti, which shows some tolerance to S. hermonthica in the field. Within 4 d of parasite attachment to the host roots, infected plants of both cultivars were significantly shorter than uninfected controls. At 55 d, infected plants of both cultivars had significantly less shoot and root biomass, and significantly smaller leaf areas than uninfected controls. The dry weight of S. hermonthica attached to host roots was insufficient at this stage to explain the decreased growth in terms of a competing sink for carbon and nitrogen. Leaf chlorophyll and nitrogen per unit area were greater in infected plants of both cultivars compared with control plants. However, whereas photosynthesis and transpiration in young leaves of infected CSH-1 plants declined with time when compared with controls, the rates in infected Ochuti plants were similar to those in uninfected controls throughout the time course of observation. In both cultivars, a strong correlation was observed between the rate of photosynthesis and stomatal conductance during photosynthetic induction, but infection resulted in a much slower induction than in controls. In CSH-1 plants, both steady-state photosynthesis and stomatal conductance were lower than in controls, whereas in leaves of Ochuti steady-state photosynthesis and stomatal conductance eventually reached the same values as in the control leaves. Results from AlCi analysis and also from determination of 13C isotope discrimination were consistent with a stomatal limitation to photosynthesis in the leaves of Striga-infected plants. The concentration of the plant growth regulator abscisic acid (ABA) was measured in the xylem sap of infected CSH-1 plants only, and was found to be twice that of uninfected plants. A possible role of ABA in determining host response to infection by S. hermonthica is discussed.  相似文献   

15.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

16.
Morphological characteristics and responses of gas exchanges to light intensity were examined in a typical vernal species, Erythronium japonicum Decne (E. japonicum), grown (i) on the floor of a deciduous broad-leaved Quercus mongolica forest (one of its native habitats, the Q. mongolica stand); (ii) bare land left undisturbed for 9 years after forest clearing (the bare stand); and (iii) in a sun crop, soybean, grown for 110 days in an experimental field and for 17 days in pots, in order to evaluate the adaptability of the photosynthetic process of this vernal species to its shady native habitats. The daytime solar radiation, ai and leaf temperatures and leaf–air vapor pressure difference (VPD) were significantly higher at the bare stand than at the Q. mongolica stand. When environmental factors observed at the Q. mongolica and bare stands were reproduced in an assimilation chamber, leaf temperatures of E. japonicum plants increased markedly with increased radiation, whereas those of soybean plants differed little from the respective air temperatures. The photosynthetic and transpiration rates and stomatal conductance in the former plants placed under conditions at the Q. mongolica stand increased with radiation and reached respective steady state values at maximum radiation at the site; whereas, under the conditions at the bare stand, they also increased and reached respective steady state values, but then continuously decreased to be lower than the respective value at the Q. mongolica stand. However, both rates and the conductance in the soybean plants under both conditions increased significantly with radiation and reached much higher respective values at the respective maximum radiations. Water use efficiency for E. japonicum plants was much higher under conditions at the Q. mongolica stand than at the bare stand and was practically equal to those for soybean plants under both conditions. Water potential in the leaves of E. japonicum at maximum radiation at the bare stand was one-third that of those at the Q. mongolica stand. The potential in soybean leaves differed little between both conditions and was roughly equal to the low value in E. japonicum leaves at the bare stand conditions. The stomatal densities on upper and lower leaf surfaces and the ratio of root weight to leaf area (R : L) differed little between E. japonicum plants grown at both stands as well as between young and adult soybean plants. However, the densities on the upper and lower surfaces of E. japonicum were 25% and 60% of the respective values of both soybean plants. The ratios of R : L of the E. japonicum plants were only one-quarter that of the young and adult soybean plants. The cooperation between these morphological and gas exchange characteristics in E. japonicum plants is discussed in relation to adaptation to the environment in native habitats.  相似文献   

17.
Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.  相似文献   

18.
Summary Seedlings of the Caesalpinoids Hymenaea courbaril, H. parvifolia and Copaifera venezuelana, emergent trees of Amazonian rainforest canopies, and of the Araucarian conifers Agathis microstachya and A. robusta, important elements in tropical Australian rainforests, were grown at 6% (shade) and 100% full sunlight (sun) in glasshouses. All species produced more leaves in full sunlight than in shade and leaves of sun plants contained more nitrogen and less chlorophyll per unit leaf area, and had a higher specific leaf weight than leaves of shade plants. The photosynthetic response curves as a function of photon flux density for leaves of shade-grown seedlings showed lower compensation points, higher quantum yields and lower respiration rates per unit leaf area than those of sun-grown seedlings. However, except for A. robusta, photosynthetic acclimation between sun and shade was not observed; the light saturated rates of assimilation were not significantly different. Intercellular CO2 partial pressure was similar in leaves of sun and shade-grown plants, and assimilation was limited more by intrinsic mesophyll factors than by stomata. Comparison of assimilation as a function of intercellular CO2 partial pressure in sun- and shade-grown Agathis spp. showed a higher initial slope in leaves of sun plants, which was correlated with higher leaf nitrogen content. Assimilation was reduced at high transpiration rates and substantial photoinhibition was observed when seedlings were transferred from shade to sun. However, after transfer, newly formed leaves in A. robusta showed the same light responses as leaves of sun-grown seedlings. These observations on the limited potential for acclimation to high light in leaves of seedlings of rainforest trees are discussed in relation to regeneration following formation of gaps in the canopy.  相似文献   

19.
Interactive effects of CO2 and water availability have been predicted to alter the competitive relationships between C3 and C4 species over geological and contemporary time scales. We tested the effects of drought and CO2 partial pressures (pCO2) ranging from values of the Pleistocene to those predicted for the future on the physiology and growth of model C3 and C4 species. We grew co-occurring Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) in monoculture at 18 (Pleistocene), 27 (preindustrial), 35 (current), and 70 (future) Pa CO2 under conditions of high light and nutrient availability. After 27 days of growth, water was withheld from randomly chosen plants of each species until visible wilting occurred. Under well-watered conditions, low pCO2 that occurred during the Pleistocene was highly limiting to C3 photosynthesis and growth, and C3 plants showed increased photosynthesis and growth with increasing pCO2 between the Pleistocene and future CO2 values. Well-watered C4 plants exhibited increased photosynthesis in response to increasing pCO2, but total mass and leaf area were unaffected by pCO2. In response to drought, C3 plants dropped a large amount of leaf area and maintained relatively high leaf water potential in remaining leaves, whereas C4 plants retained greater leaf area, but at a lower leaf water potential. Furthermore, drought-treated C3 plants grown at 18 Pa CO2 retained relatively greater leaf area than C3 plants grown at higher pCO2 and exhibited a delay in the reduction of stomatal conductance that may have occurred in response to severe carbon limitations. The C4 plants grown at 70 Pa CO2 showed lower relative reductions in net photosynthesis by the end of the drought compared to plants at lower pCO2, indicating that CO2 enrichment may alleviate drought effects in C4 plants. At the Pleistocene pCO2, C3 and C4 plants showed similar relative recovery from drought for leaf area and biomass production, whereas C4 plants showed higher recovery than C3 plants at current and elevated pCO2. Based on these model systems, we conclude that C3 species may not have been at a disadvantage relative to C4 species in response to low CO2 and severe drought during the Pleistocene. Furthermore, C4 species may have an advantage over C3 species in response to increasing atmospheric CO2 and more frequent and severe droughts.  相似文献   

20.
Morphological and functional characteristics of Plantago media L. leaves were compared for plants growing at different light regimes on limestone outcrops in Southern Timan (62°45′N, 55°49′E). The plants grown in open areas under exposure to full sunlight had small leaves with low pigment content and high specific leaf weight; these leaves exhibited high photosynthetic capacity and elevated water use efficiency at high irradiance. The maximum photochemical activity of photosystem II (F v/F m) in leaves of sun plants remained at the level of about 0.8 throughout the day. The photosynthetic apparatus of sun plants was resistant to excess photosynthetically active radiation, mostly due to non-photochemical quenching of chlorophyll fluorescence (qN). This quenching was promoted by elevated deepoxiation of violaxanthin cycle pigments. Accumulation of zeaxanthin, a photoprotective pigment in sun plant leaves was observed already in the morning hours. The plant leaves grown in the shade of dense herbage were significantly larger than the sun leaves, with pigment content 1.5–2.0 times greater than in sun leaves; these leaves had low qN values and did not need extensive deepoxidation of violaxanthin cycle pigments. The data reveal the morphophysiological plasticity of plantain plants in relation to lighting regime. Environmental conditions can facilitate the formation of the ecotype with photosynthetic apparatus resistant to photoinhibition. Owing to this adjustment, hoary plantain plants are capable of surviving in ecotopes with high insolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号