首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A. Rieger  A. Lutz  R. Hampp 《Planta》1992,187(1):95-102
Quantitative histochemistry was used to investigate the tissue-specific compartmentation of soluble carbohydrates (sucrose, glucose, fructose), starch and malate in the laminar pulvinus, leaf blade and petiole of Phaselous coccineus L. at day and night positions of diurnal leaf movement. Total carbohydrate levels measured in a series of cross sections along individual pulvini of 24-d-old plants showed only small differences between the day and night positions of the respective leaf. In contrast, the level of malate changed during diurnal leaf movement, especially in the central part of a pulvinus. The levels of glucose and fructose in the pulvinus increased towards the transition zones between the pulvinus and lamina, and pulvinus and petiole, and this trend was even more pronounced for starch. By contrast, sucrose levels were highest in the pulvinus proper. The transverse compartmentation of metabolites was studied in distinct, approx. 0.5-mm-thick tissue slices from the central part of a pulvinus. These were dissected further into up to 14 distinct subsamples (bundle, bundle sheath, motor tissues, flanks). Irrespective of the position of the leaf (day or night), the central vascular core and the surrounding bundle sheath had high levels of sucrose (up to 500 mmol-(kg DW)–1) and low levels of glucose and fructose (below 100 mmol-(kg DW)–1), while in the cortex the situation was reversed. In the night position the level of sucrose decreased by approx. 30% in the bundle sheath and the central vascular core but not in the other sections. We thus suggest that because of the relatively small diurnal changes in their cortical pools, soluble sugars are not involved in the osmotic processes resulting in leaf movement. In contrast, pulvini from 14-d-old plants showed an interesting diurnal change in starch and malate pools in the outermost layer of the extensor. Here starch increased at night while the malate pool was lowered nearly stoichiometrically. Inverse pool sizes were found in the day position of the respective leaves. Although less significant, the opposite diurnal variation occurred in samples taken from the flexor region. We thus were able to locate areas of different carbohydrate activities in the laminar pulvinus of P. coccineus. The central vascular core, including the bundle sheath, is involved in temporary storage of photoassimilates, and the cortical regions are responsible for osmotically driven leaf movement. The results are discussed with respect to guard-cell physiology.Abbreviations CLP cut-leaf pulvini - ILP intact-leaf pulvini This work was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

2.
Summary Horizontally-placed segments of Avena sativa L. shoots show a negative geotropic response after a period of 30 min. This response is based on cell elongation on the lower side of the leaf-sheath base (pulvinus). Triticum aestivum L., Hordeum vulgare L. and Secale cereale L. also show geotropic responses that are similar to those in Avena shoots. The pulvinus is a highly specialized organ with radial symmetry and is made up of epidermal, vascular, parenchymatous and collenchymatous tissues. Statoliths, which are confined to parenchyma cells around the vascular bundles, sediment towards the gravitational field within 10–15 min of geotropic stimulation. Collenchymatous cells occur as prominent bundle caps, and in Avena, they occupy about 30% of the volume of the pulvinus. Geotropic stimulation causes a 3- to 5-fold increase in the length of the cells on the side nearest to the center of the gravitational field. Growth can also be initiated in vertically-held pulvini by the application of indole-3-acetic acid, 1-naphthaleneacetic acid or 2.4-dichlorophenoxyacetic acid. 2.3.5.-triiodobenzoic acid interferes with growth response produced by geotropic stimulation as well as with the response caused by auxin application. Gibberellic acid and kinetin have no visible effect on the growth of the pulvinus. Polarization microscopy shows a unique, non-uniform stretching of the elongating collenchymatous cells. Nonelongated collenchymatous cells appear uniformally anisotropic. After geotropic stimulation or auxin application, they appear alternately anisotropic and almost isotropic. Such a pattern of cell elongation is also observed in collenchyma cells of geotropically-stimulated shoots of Rumex acetosa L., a dicotyledon.Abbreviations 2.4-D 2.4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA l-naphthaleneacetic acid - TIBA 2.3.5-triiodobenzoic acid  相似文献   

3.
提要叶枕作为叶活动的"马达器官",在豆科植物的分类、演化、发育和生理等方面都具有十分重要的研究意义,但在古植物学中似乎研究甚少。基于产自山东省临朐县中新世山旺组的叶印痕化石,结合现生紫荆叶结构和叶枕的形态观察,文中着重研究这些叶印痕化石中的叶枕形态,发现它们保存了倒卵形的上叶枕印痕和上叶枕组织腐烂分解后留下的半圆形印痕,其中一块还保存了卵形的下叶枕印痕。结合这些化石的叶结构特征,进一步确认了中新世山旺组紫荆属叶化石——华紫荆的存在,并指定一份保存于中国科学院南京地质古生物研究所的标本为后选模式,即No.39(H)。紫荆属隶属于云实亚科、紫荆族,为现存豆科植物分子系统发育树上最基部的类群之一,因此该属的化石历史对认识豆科植物的系统发育、早期演化和分异以及生物地理历史都至关重要。然而,由于过去缺乏详细的叶结构和叶枕研究,大多数以往报道的产自欧亚大陆和北美新生代的紫荆属叶印痕化石种都受到质疑、否定或亟需进一步研究。迄今为止,紫荆属最早的、具叶枕的叶化石发现于美国俄勒冈州晚始新世的约翰迪组,而最早的豆科叶枕则发现于阿根廷巴塔哥尼亚早古新世萨拉曼卡组中的一种可能属于含羞草亚科植物的小叶中。结合近来的比较形态解剖学研究结果,作者赞同先前的假说——紫荆属的单叶和叶枕类型实质上都是衍生的性状,而最原始的豆科植物长着羽状复叶,其复叶叶柄和小叶叶柄上可能都有各自的叶枕。  相似文献   

4.
Summary Using energy-dispersive X-ray microanalysis, the concentrations of ions, especially potassium and chlorine, were determined in different tissues of primary and tertiary pulvini of Mimosa pudica. It was shown that stimulating the leaf was followed by ion displacements which were most striking in the outer extensor cells, resulting in turgor loss. Since Ca concentration remains relatively constant in cell walls of collapsed cells, the changes of K concentration are best described by the K:Ca ratio. After stimulation the K:Ca ratio dropped in the outer extensor of the primary pulvinus from 775.3 to 2.37 in the cytoplasm, and from 542.2 to 9.25 in the cell wall. Changes in chlorine content were less striking in the primary pulvinus. The KCl ratios in some cases were lower than 1.0, which indicates that Cl content can increase, while K content is diminished. In the non-stimulated tertiary pulvini the outer extensor cells show high concentrations of Cl, but much lower Cl concentrations were found after stimulation. In contrast to the primary pulvinus the K content of the tertiary pulvini is very low. In the vascular tissues of both primary and tertiary pulvini stimulation is followed by a release of K and Cl out of the sieve element cytoplasm into the apoplast. K then appears accumulated in the cell walls of the collenchymatous tissue. These displacements lead to the assumption that the collenchymatous apoplast temporarily functions as a reservoir for K and to a lesser extent for Cl. With regard to the mechanism of leaf movement after stimulation, the accumulation of ions in the apoplast seems to be initiated by the decrease of water potential triggered by an apoplastic accumulation of unloaded sucrose (Fromm and Eschrich 1988a). The resulting turgor release in the outer extensor is accompanied by an efflux of ions.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

5.
Pulvini of excised stem segments from barley (Hordeum vulgare cv `Larker') were pretreated with 1 millimolar coumarin before gravistimulation to reduce longitudinal cell expansion and exaggerate radial cell enlargement. The cellular localization and pattern of graviresponse across individual pulvini were then evaluated by cutting the organ in cross-section, photographing the cross-section, and then measuring pulvinus thickness and the radial width of cortical and epidermal cells in enlargements of the photomicrographs. With respect to orientation during gravistimulation, we designated the uppermost point of the cross-section 0° and the lowermost point 180°. A gravity-induced increase in pulvinus thickness was observable within 40° of the vertical in coumarin-treated pulvini. In upper halves of coumarin-treated gravistimulated pulvini, cells in the inner cortex and inner epidermis had increased radial widths, relative to untreated gravistimulated pulvini. In lower halves of coumarin-treated pulvini, cells in the central and outer cortex and in the outer epidermis showed the greatest increase in radial width. Cells comprising the vascular bundles also increased in radial width, with this pattern following that of the central cortex. These results indicate (a) that all cell types are capable of showing a graviresponse, (b) that the graviresponse occurs in both the top and the bottom of the responding organ, and (c) that the magnitude of the response increases approximately linearly from the uppermost point to the lowermost. These results are also consistent with models of gravitropism that link the pattern and magnitude of the graviresponse to graviperception via statolith sedimentation.  相似文献   

6.
The maize (Zea mays L.) stem pulvinus is a disc of tissue located apical to each node that functions to return a tipped stem to a more upright position via increased cell elongation on its lower side. We investigated the possibility that reactive oxygen species (ROS) and hydrogen peroxide (H2O2), in particular, are involved in the gravitropic response of the pulvinus prior to initiation of the growth response by employing the cytochemical stain 3,3'-diaminobenzidine (DAB). DAB polymers were found in the bundle sheath cells of gravistimulated pulvini in association with amyloplasts after 1 min of gravistimulation, and the signal spread throughout the cytosol of these cells by 30 min. Furthermore, treatment of maize stem explants containing pulvini with 1 mm H2O2 on their upper sides caused reversal of bending polarity. Similar, though less dramatic, results were obtained via application of 1 mm ascorbic acid to the lower side of the explants. In addition, we determined that a maize cytoplasmic aconitase/iron regulatory protein 1 (IRP1) homolog is up-regulated in the pulvinus bundle sheath cells after gravistimulation using suppressive subtractive hybridization PCR (SSH PCR), real-time RT-PCR and in situ hybridization. Although we do not yet know the role of the IRP1 homolog in the pulvinus, the protein is known to be a redox sensor in other systems. Collectively, our results point to an increase in ROS quite early in the gravitropic signalling pathway and its possible role in determining the direction of bending of the pulvini. We speculate that an ROS burst may serve to link the physical phenomenon of amyloplast sedimentation to the changes in cellular biochemistry and gene expression that facilitate directional growth.  相似文献   

7.
The structure of the secondary pulvinus of Robinia pseudoacacia has been examined together with ultrastructural features of motor cells both in open and closed pulvini, to identify ultrastructural changes associated with leaflet movement. Pulvini have a central vascular core bordered by thick-walled collenchyma cells, which in turn are surrounded by several layers of cortical parenchyma cells. Cortical motor cells exhibit ultrastructural features similar to those reported in homologous cells of other pulvini. The vacuolar compartment contains two kinds of vacuoles: nontannin vacuoles, which change both in number and size during leaflet movement, and tannin vacuoles, which may act as an ion reservoir. No differences in wall thickness were found between flexor and extensor motor cells. Thick walls of collenchyma cells show numerous pits with plasmodesmata through which the phloem parenchyma cells and the inner cortical motor cells are connected. Tannin vacuoles and calcium oxalate crystals are common inclusions of phloem parenchyma cells. The tissue arrangement and the occurrence of pits with plasmodesmata in the central cylinder cells provide evidence of symplastic continuity through the central cylinder between the extensor and flexor regions of the motor organs. The greater amplitude of Robinia leaflet movements may be related to the extension of motor regions, the scarcity of lignification in the central vascular core, and the thin flexor walls.  相似文献   

8.
Legume pulvini have a clearly delimited endodermis, whose variable content has been associated with the velocity and type of leaf movement: pulvini in leaves with fast nastic movement contain starch grains; pulvini in leaves with slow nastic movements have calcium oxalate crystals as well as starch grains in the endodermis. However, the studies carried out to date have involved few legume species. This study therefore purported to examine the consistency of this hypothesis in other legumes. Thus, the structure and content of the pulvinus endodermal cells of nine legumes of the Brazilian cerrado, with different types and velocities of leaf movement, were investigated: slow nyctinastic and heliotropic movements ( BAUHINIA RUFA, COPAIFERA LANGSDORFFII, SENNA RUGOSA - Caesalpinioideae; ANDIRA HUMILIS and DALBERGIA MISCOLOBIUM - Faboideae; STRYPHNODENDRON POLYPHYLLUM - Mimosoideae), slow heliotropic movement ( ZORNIA DIPHYLLA - Faboideae), and fast seismonastic and slow nyctinastic and heliotropic movements ( MIMOSA RIXOSA and MIMOSA FLEXUOSA - Mimosoideae). Samples were prepared following standard plant anatomy and ultrastructure techniques. The endodermis of all the species contains starch grains. In the species displaying only slow movements, calcium oxalate prismatic crystals were observed in addition to starch grains, except in ZORNIA DIPHYLLA. In conclusion, oxalate crystals occur only in endodermal cells of pulvini that display slow movements, while starch grains are always present in pulvinus endodermal cells of plants with any kind of movement.  相似文献   

9.
Structural and hydraulic correlates of heterophylly in Ginkgo biloba   总被引:1,自引:0,他引:1  
This study investigates the functional significance of heterophylly in Ginkgo biloba, where leaves borne on short shoots are ontogenetically distinct from those on long shoots. Short shoots are compact, with minimal internodal elongation; their leaves are supplied with water through mature branches. Long shoots extend the canopy and have significant internodal elongation; their expanding leaves receive water from a shoot that is itself maturing. Morphology, stomatal traits, hydraulic architecture, Huber values, water transport efficiency, in situ gas exchange and laboratory-based steady-state hydraulic conductance were examined for each leaf type. Both structure and physiology differed markedly between the two leaf types. Short-shoot leaves were thinner and had higher vein density, lower stomatal pore index, smaller bundle sheath extensions and lower hydraulic conductance than long-shoot leaves. Long shoots had lower xylem area:leaf area ratios than short shoots during leaf expansion, but this ratio was reversed at shoot maturity. Long-shoot leaves had higher rates of photosynthesis, stomatal conductance and transpiration than short-shoot leaves. We propose that structural differences between the two G. biloba leaf types reflect greater hydraulic limitation of long-shoot leaves during expansion. In turn, differences in physiological performance of short- and long-shoot leaves correspond to their distinct ontogeny and architecture.  相似文献   

10.
Collings DA  Winter H  Wyatt SE  Allen NS 《Planta》1998,207(2):246-258
Characterization of gravitropic bending in the maize stem pulvinus, a tissue that functions specifically in gravity responses, demonstrates that the pulvinus is an ideal system for studying gravitropism. Gravistimulation during the second of three developmental phases of the pulvinus induces a gradient of cell elongation across the non-growing cells of the pulvinus, with the most elongation occurring on the lower side. This cell elongation is spatially and temporally separated from normal internodal cell elongation. The three characterized growth phases in the pulvinus correspond closely to a specialized developmental sequence in which structural features typical of cells not fully matured are retained while cell maturation occurs in surrounding internodal and nodal tissue. For example, the lignification of supporting tissue and rearrangement of transverse microtubules to oblique that occur in the internode when cell elongation ceases are delayed for up to 10 d in the adjacent cells of the pulvinus, and only occurs as a pulvinus loses its capacity to respond to gravistimulation. Gravistimulation does not modify this developmental sequence. Neither wall lignification nor rearrangement of transverse microtubules occurs in the rapidly elongating lower side or non-responsive upper side of the pulvinus until the pulvinus loses the capacity to bend further. Gravistimulation does, however, lead to the formation of putative pit fields within the expanding cells of the pulvinus. Received: 18 April 1998 / Accepted: 2 July 1998  相似文献   

11.
12.
Moran N 《FEBS letters》2007,581(12):2337-2347
"Osmotic Motors"--the best-documented explanation for plant leaf movements--frequently reside in specialized motor leaf organs, pulvini. The movements result from dissimilar volume and turgor changes in two oppositely positioned parts of the pulvinus. This Osmotic Motor is powered by a plasma membrane proton ATPase, which drives KCl fluxes and, consequently, water, across the pulvinus into swelling cells and out of shrinking cells. Light signals and signals from the endogenous biological clock converge on the channels through which these fluxes occur. These channels and their regulatory pathways in the pulvinus are the topic of this review.  相似文献   

13.
14.
Segments can be cut from the peducular-1 internode of oat (Avena sativa L.) shoots so as to contain the graviresponsive, auxin-sensitive leaf sheath pulvinus, and the gibberellin-sensitive internodal tissue. These two growth-capable tissues were used to study the effects and interactions of jasmonic acid (JA) and abscisic acid (ABA) in regulating cell elongation. When supplied alone at physiologic concentrations (10−5, 10−4 m), JA promoted growth and cell wall synthesis in the internodal tissue, whereas by itself, ABA inhibited internodal elongation and even inhibited JA-promoted growth. When gibberellic acid (GA3) was used to stimulate internodal elongation, JA and ABA caused similar levels of inhibition and, at certain concentrations, were synergistic. Inhibition by ABA was initiated several hours earlier than inhibition by JA, and only the ABA effect could be partially overcome by 10−3 m aminoethoxyvinylglycine. Both JA and ABA inhibited elongation of pulvinar tissue that was induced to grow by gravistimulus or auxin, although here JA was more potent than ABA at equimolar concentrations. When 10−5 m fusicoccin was used as a general nonphysiologic growth stimulus, JA had no effect on the internode but inhibited the pulvinus, whereas ABA had no effect on the pulvinus but inhibited the internode. These results provide strong physiologic evidence that JA and ABA act by different mechanisms in the regulation of elongation, at least in this representative grass. Received May 28, 1996; accepted November 7, 1996  相似文献   

15.
Plants sense positional changes relative to the gravity vector. To date, the signaling processes by which the perception of a gravistimulus is linked to the initiation of differential growth are poorly defined. We have investigated the role of inositol 1,4,5-trisphosphate (InsP(3)) in the gravitropic response of oat (Avena sativa) shoot pulvini. Within 15 s of gravistimulation, InsP(3) levels increased 3-fold over vertical controls in upper and lower pulvinus halves and fluctuated in both pulvinus halves over the first minutes. Between 10 and 30 min of gravistimulation, InsP(3) levels in the lower pulvinus half increased 3-fold over the upper. Changes in InsP(3) were confined to the pulvinus and were not detected in internodal tissue, highlighting the importance of the pulvinus for both graviperception and response. Inhibition of phospholipase C blocked the long-term increase in InsP(3), and reduced gravitropic bending by 65%. Short-term changes in InsP(3) were unimpaired by the inhibitor. Gravitropic bending of oat plants is inhibited at 4 degrees C; however, the plants retain the information of a positional change and respond at room temperature. Both short- and long-term changes in InsP(3) were present at 4 degrees C. We propose a role for InsP(3) in the establishment of tissue polarity during the gravitropic response of oat pulvini. InsP(3) may be involved in the retention of cold-perceived gravistimulation by providing positional information in the pulvini prior to the redistribution of auxin.  相似文献   

16.
17.
P. Fleurat-Lessard 《Protoplasma》1981,105(3-4):177-184
Summary InMimosa pudica the primary and secondary motor organs (pulvini) of fully grown leaves are capable of graviresponse. These organs possess sedimentable amyloplasts in their starch sheath cells.In the primary pulvinus these cells are characterized by a structural polarity induced by the localization of nucleus at their (morphologically) apical part and the localization of amyloplasts at their (physically) basal part. These cells also display structural peculiarities including plasmodesmatal disposition, little development of the endoplasmic reticulum and an absence of vacuolar tannins; moreover, the sedimentation of the amyloplasts, induced by gravistimulation, is accompanied by the variation of localization of the cytoplasm, vacuole and mitochondria and by structural modifications of the nucleus and endoplasmic reticulum.  相似文献   

18.
Eleocharis vivipara Link alters its photosynthetic mode depending on the growth environment. It utilizes C4 photosynthesis when grown under terrestrial conditions (terrestrial form) and C3 photosynthesis when grown under submerged conditions (submerged form). The photosynthetic organ (the mature internodal region of the culm) of the terrestrial form shows typical Kranz anatomy with well-developed bundle sheath cells, while the bundle sheath cells of the submerged form are not developed. In the mature internodal region of the terrestrial form, expression of the genes encoding two carboxylases, the small subunit of ribulose 1,5-bisphosphate carboxylase (RbcS) and phosphoenolpyruvate carboxylase (Ppc), occurred mainly in bundle sheath cells and in mesophyll cells, respectively, as seen in a typical C4 leaf. In the submerged form, RbcS was expressed in both bundle sheath cells and mesophyll cells, and no expression of Ppc was observed. In the immature internodal region with undeveloped bundle sheath cells, both life forms showed the same expression pattern as in C3 plants: RbcS expression was localized in mesophyll cells and no Ppc expression was observed. The C4-type expression pattern was established concomitantly with the development of bundle sheath cells during tissue maturation in the terrestrial internode. In contrast to the terrestrial form, the submerged form maintains C3-type gene expression during tissue maturation. When the terrestrial culm was submerged, a region of transition from the terrestrial form to the submerged form was established in newly sprouting culms. In this transitional region, C4-type expression of the two carboxylase genes was still maintained even though the development of bundle sheath cells was repressed. This observation suggests that the C4-type cell-specific gene expression pattern does not depend on the formation of Kranz anatomy.  相似文献   

19.
Summary Paired leaflets ofAlbizzia julibrissin spread apart (open) in the daytime and fold together (close) at night. We examined the structure of cells in open and closedAlbizzia motor organs (pulvini) to identify reversible changes in structure associated with motility. Pulvini were fixed in glutaraldehyde and stained using conventional methods. The pulvinus has a central vascular cylinder bordered by thick-walled collenchyma cells, in turn surrounded by an endodermis and many layers of cortical parenchyma. Cortical cells in the extensor undergo large changes in shape during leaflet closure linked with: formation of wall infoldings, development of a large periplasmic space filled with fibrils and membranes, development of lobes on the nucleus, evagination of the nuclear outer envelope membrane, break-up of the large central vacuole to form many small vacuoles, and linking of the plasmalemma to inner regions of the cytoplasm by microfilaments. Cortical cells in the flexor, by contrast, remain relatively stable during leaflet movement. Microtubules are present near the plasmalemma in both extensor and flexor cells; in the extensor, spherical coated vesicles are located near the microtubules. The possible function of these structures in regulating intracellular shuttling processes is discussed.  相似文献   

20.
Ku SB  Shieh YJ  Reger BJ  Black CC 《Plant physiology》1981,68(5):1073-1080
The succulent, cylindrical leaves of the C4 dicot Portulaca grandiflora possess three distinct green cell types: bundle sheath cells (BSC) in radial arrangement around the vascular bundles; mesophyll cells (MC) in an outer layer adjacent to the BSC; and water storage cells (WSC) in the leaf center. Unlike typical Kranz leaf anatomy, the MC do not surround the bundle sheath tissue but occur only in the area between the bundle sheath and the epidermis. Intercellular localization of photosynthetic enzymes was characterized using protoplasts isolated enzymatically from all three green cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号