首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Every chromosome number from n = 12 to n =34 and also many higher numbers are known in one or more of the 130+ species of Echeveria, and the numerical boundary between diploids and tetraploids is not immediately apparent. Echeveria also is extraordinary for the number and diversity of hybrids that it can produce in cultivation, both within the genus and with species of several related genera. In 42 collections studied, the morphologically and cytologically variable E. secunda of central Mexico has n = 30-32, often with one or more B-chromosomes, and some quadrivalents are formed at meiosis in nearly every cell. Twenty-four hybrids of E. secunda, with 22 species or cytotypes considered diploids, resemble the former much more closely in appearance, and at meiosis 15-16 paired elements (bivalents and multivalents) are formed, never more, regardless of the number of chromosomes, 12 to 34, that were received from the other parent. It is concluded that the 15-16 paired elements in these hybrids are formed by the 30-32 chromosomes received from E. secunda, and that most chromosomes from the other parents occur as univalents, although usually a few associate with pairs from E. secunda to produce multivalents. Hybrids of E. secunda with 11 definitely tetraploid species having n = 34 to n = 68 are nicely intermediate in morphology between their parents, form mostly or entirely bivalents at meiosis, and most, probably all, including five intergeneric hybrids, are fertile. These observations are all consistent with the conclusion that E. secunda is an autotetraploid, even though no plants of the species having n = 15 or 16 have been found, and even though some other species of Echeveria having as many as 34 gametic chromosomes appear to be effectively diploid. Observations on pollen stainability and on second-generation hybrids are all compatible with this conclusion. The high chromosome numbers in many Mexican Crassulaceae that are now effectively diploid may have originated as polyploids that have become diploidized by mutation, loss, or suppression of duplicated chromosomes, segments, and genes. Hybrids of E. secunda, with three other species that appear to be tetraploids, have less regular meiosis, apparently because all of the chromosomes from the other parents do not regularly form pairs in the hybrids. These three species may represent intermediate stages in the processes of diploidization.  相似文献   

2.
Karyotypes of species sects. Linum and Adenolinum have been studied using C/DAPI-banding, Ag-NOR staining, FISH with 5S and 26S rDNA and RAPD analysis. C/DAPI-banding patterns enabled identification of all homologous chromosome pairs in the studied karyotypes. The revealed high similarity between species L. grandiflorum (2n = 16) and L. decumbens by chromosome and molecular markers proved their close genome relationship and identified the chromosome number in L. decumbens as 2n = 16. The similarity found for C/DAPI-banding patterns between species with the same chromosome numbers corresponds with the results obtained by RAPD-analysis, showing clusterization of 16-, 18- and 30-chromosome species into three separate groups. 5S rDNA and 26S rDNA were co-localized in NOR-chromosome 1 in the genomes of all species investigated. In 30-chromosome species, there were three separate 5S rDNA sites in chromosomes 3, 8 and 13. In 16-chromosome species, a separate 5S rDNA site was also located in chromosome 3, whereas in 18-chromosome species it was found in the long arm of NOR-chromosome 1. Thus, the difference in localization of rDNA sites in species with 2n = 16, 2n = 30 and 2n = 18 confirms taxonomists opinion, who attributed these species to different sects. Linum and Adenolinum, respectively. The obtained results suggest that species with 2n = 16, 2n = 18 and 2n = 30 originated from a 16-chromosome ancestor.  相似文献   

3.
Summary The genomic relationship between cultivated sorghum [Sorghum bicolar (L.) Moench, race bicolor, De Wet, 2n=20] and Johnsongrass [S. halepense (L.) Pers., 2n=40] has been a subject of extensive studies. Nevertheless, there is no general consensus concerning the ploidy level and the number of genomes present in the two species. This research tested the validity of four major genomic models that have been proposed previously for the two species by studying chromosome behaviors in the parental species, 30-chromosome hybrids [sorghum, (2n=20) x Johnsongrass, (2n=40)], 40-chromosome hybrids [sorghum, (2n=40) x Johnsongrass, (2n=40)] and 60-chromosome amphiploids. Chromosome pairings of amphiploids are reported for the first time. Chromosomes of cultivated sorghums paired exclusively as 10 bivalents, whereas Johnsongrass had a maximum configuration of 5 ring quadrivalents with occasional hexavalents and octovalents. In contrast, 40-chromosome cultivated sorghum had up to 9 ring quadrivalents and 1 hexavalent. Pairing in the 30-chromosome hybrids showed a maximum of 10 trivalents, and that in the 40-chromosome hybrids exhibited 8 quadrivalents, 5 of which were rings, together with a few hexavalents. Amphiploid plants showed up to 3 ring hexavalents, 1 chain hexavalent and a chain of 12 chromosomes. The data suggest that cultivated sorghum is a tetraploid species with the genomic formula AAB1B1, and Johnsongrass is a segmental auto-allo-octoploid, AAAA B1B1B2B2. The model is further substantiated by chromosome pairing in amphiploid plants whose proposed genomic formula is AAAAAA B1B1B1B1 B2B2.Contribution no. 87-391-J from the Kansas Agriculatural Experiment Station  相似文献   

4.
Heuchera micrantha (Saxifragaceae) is a morphologically variable species comprising five varieties: diversifolia, erubescens, hartwegii, micrantha, and pacifica. Both diploids (2n = 14) and tetraploids (2n = 28) occur within the species. The tetraploid cytotype occupies the central portion of the geographic range of the species, whereas diploids occur primarily in the southern and northern portions of the range. Both diploids and tetraploids have been detected within vars. diversifolia, pacifica, and hartwegii. All counts for vars. erubescens and micrantha are diploid and tetraploid, respectively. Several lines of evidence suggest that tetraploid H. micrantha is of autopolyploid origin. The species is distinct morphologically and is also well separated geographically from other closely related species in subsection Micranthae. The two cytotypes are karyologically identical, possess nearly the same suite of allozymes, and have a very high genetic identity (Ī = 0.971). Significantly, an earlier study documented tetrasomic inheritance in the tetraploid cytotype. Following theoretical expectations, the mean number of alleles per locus, proportion of loci that are polymorphic, and observed heterozygosity are significantly higher for the autotetraploid than for the diploid. The occurrence of both cytotypes in three of the varieties suggests that autopolyploidy may have occurred several times independently in H. micrantha. This was further substantiated by discriminant analysis using morphological characters, which provided evidence for a minimum of two separate origins for the autopolyploid cytotype.  相似文献   

5.
The largely Mexican genus Echeveria is characterized by an extensive series of dysploid chromosome numbers, with every gametic number from 12 to 34 known in at least one species. Within this nearly three-fold range of numbers, the boundary between diploidy and tetraploidy is not immediately apparent. However, species of Echeveria can be hybridized in an extraordinary number of combinations, both among themselves and with related genera, and study of the morphology of the hybrids and the pairing of their chromosomes provides information that helps to identify the ploidy of the parents. This paper reports observations from study of 80 hybrids between E. ciliata (n = 25) and 73 other species and/or cytotypes. Hybrids between E. ciliata and definite diploids are all nicely intermediate morphologically, whatever the chromosome numbers. In these same hybrids, most chromosomes become involved in pairing at meiosis, and the number of paired elements (bivalents and multivalents) approaches or equals, but never exceeds, the number of chromosomes received from the lower-numbered parent. In most cells, relatively few univalents are present, sometimes none. These observations are considered to indicate that all paired elements include at least one chromosome from each parent and therefore that pairing occurs between chromosomes of different parents only (allosyndesis). Since none of the 25 gametic chromosomes of E. ciliata is able to pair with any other, although they do pair very extensively with chromosomes from many other species having a wide range of numbers, E. ciliata is considered to be diploid in spite of its relatively high chromosome number. On the other hand, hybrids of E. ciliata with definite polyploids resemble the latter much more closely in their morphology, and at meiosis most or all pairing occurs by autosyndesis between chromosomes received from the polyploid parent, while the chromosomes from E. ciliata generally remain unpaired. In these respects most, but not all, species of Echeveria having as many as 34 gametic chromosomes have the same properties as E. ciliata and also are considered to be diploid. The ancestral chromosome number in the genus is not clear, but it is probably near the upper end of the series of dysploid numbers.  相似文献   

6.
Analyses of meiotic and mitotic chromosomes were undertaken in 16 taxa of Echinocereus belonging to 12 species and all seven taxonomic sections (sensu Taylor). Chromosome numbers are reported for the first time for eight taxa, and previously published chromosome counts are confirmed for the remaining eight. Both diploid and polyploid counts were obtained. Eleven (69%) of the taxa surveyed were diploid (2n = 22); the five varieties of E. engelmannii were polyploid (2n = 44). Overall, chromosome counts are available for 23 of the 48 proposed species (sensu Taylor). Of these, 19 (82%) are diploid, and four (18%) are polyploid. Polyploid cytotypes are most common in the primitive sections, e.g., sections Erecti and Triglochidiatus, which suggests that polyploidy is probably a derived condition in Echinocereus. Polyploid taxa range from medium to high latitudes and elevations relative to the overall distribution of the genus. Polyploidy, hybridization, and cryptic chromosomal rearrangements are thought to be the major causes of the speciation events of the genus.  相似文献   

7.
Rutidosis leptorrhynchoides is an endangered plant endemic tosoutheastern Australia. Chromosome analysis of 19 of the 24known populations of the species has identified 17 differentchromosome variants or cytotypes. The most common cytotypesare a diploid and a tetraploid based on x = 11, and triploidand hexaploid plants with this basic number were also observed.Diploids, triploids and tetraploids based on a second basicnumber ofx = 13 were also seen. Plants with 2 n = 24 were shownto be hybrids between diploids with the two different basicnumbers. Meiotic chromosome pairing analysis of the plants with2n = 24 showed a maximum of two trivalents indicating the presenceof extra copies of one pair of large and one pair of small chromosomesin the 2 n = 26 plants. In addition, a number of different aneuploidsof the 2 n = 22 and 2 n = 44 races were found and many of thesealso showed structural chromosomal variation. The distributionof the two main chromosome races is disjunct with the tetraploidsconfined to southern Victoria. To avoid dysgenic effects, futurere-establishment efforts for this species should avoid mixingseed from different chromosome races. Copyright 2001 Annalsof Botany Company Aneuploidy, conservation genetics, karyotypes, meiosis, polyploidy  相似文献   

8.
Epidendrum is one of the largest Neotropical genera of Orchidaceae and comprises approximately 1500 species. Only 2.8% of these species have been studied cytologically, demonstrating chromosome numbers ranging from n = 12 in E. fulgens to n = 120 in E. cinnabarinum. The present work evaluated the evolution of the karyotypes of Epidendrum spp. based on data gathered from the literature and from analyses of the karyotypes of 16 Brazilian species (nine previously unpublished). The appearance of one karyotype with n = 12 with one larger chromosome pair in subgenus Amphiglottium appears to have occurred at the beginning of the divergence of this lineage, and x = 12 probably represents the basic number of this subgenus. Epidendrum secundum exhibits wide variation in chromosome numbers, with ten different cytotypes found in 22 Brazilian populations, seven of which were new counts: 2n = 30, 42, 50, 54, 56, 58 and 84. Most lineages of Epidendrum seem to have been secondarily derived from one ancestral stock with x = 20, as is seen in the majority of the present‐day representatives of the genus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 329–344.  相似文献   

9.
The present paper deals with cytological studies on the population basis of 21 species belonging to 9 genera of tribe Paniceae of family Poaceae from cytologically unexplored area of Western Himalayas i.e. district Kangra of Himachal Pradesh for the assessment of genetic diversity of grass flora. On world-wide basis, the chromosome counts have been made for the first time for three species such as Brachiaria remota (n = 16), Digitaria granularis (n = 36) and Isachne albens (n = 5). Similarly, on India basis, altogether new records are made for two species such as Echinochloa cruspavonis (n = 27) and Paspalum distichum (2n = 50). A comparison of the different euploid cytotypes studied at present for Digitaria adscendens, D. setigera and Oplismenus compositus revealed significant variations in their morphology, depicting increase in some of the characters of polyploid cytotypes. The course of meiosis has been observed to be normal in all the studied populations with high pollen fertility except for two species such as Paspalum dilatatum and P. distichum marked with abnormal meiosis and reduced pollen fertility.  相似文献   

10.
Morphology and meiosis are described in four progeny plants resulting from tetraploid Grindelia camporum Greene (2n = 24) from California pollinated by diploid G. grandiflora Hook. (2n = 12) from Coahuila, Mexico. Three of the four progeny were tetraploid, morphologically like the pistillate parent, and had metaphase I chromosome configurations which included quadrivalents and a complementary number of bivalents. They are considered to have resulted from selfing. The fourth plant was triploid (2n = 18) andmorphologically intermediate between the parents. Chromosome configurations in the triploid were variable with univalents, ring and rod bivalents, trivalents and pentavalents. These two species are considered related through an ancestor with a basic genome, but are separated cytologically by polyploidy and by two distinct chromosomal interchanges that explain the configurations observed in the triploid hybrid.  相似文献   

11.
Chromosomal novelties and the level of meiotic and mitotic abnormalities were studied in a hybrid zone between two chromosomally differentiated Spalax cytotypes of 2n = 58 and 2n = 52. These cytotypes differ by five Rb fusions, four centromeric shifts accompanied by heterochromatin deletion, one paracentric inversion, and the Y-chromosome reorganization. Among 149 specimens studied, 82 were hybrids with 64 different karyotypes ranging in diploid numbers from 2n = 50 to 2n = 60. Nine hybrid specimens were mosaics for the chromosome numbers due to occurrence of cell lines with different Robertsonian chromosome arrangements, and six specimens possessed variable number of B-chromosomes. Mosaicism of B-chromosomes was found also in meiotic cells however chromatid breaks and abnormal chromosome pairing during meiosis occurred very rarely. All these results imply some local genomic instability resulting in the spontaneous process of reversible Rb fusions.  相似文献   

12.
Aster ageratoides var. pendulus, a recently described taxon, is endemic to Mt Hupingshan of north‐western Hunan, China. Field observations and collections were made from the only known population. Root‐tip squashes were used to determine the chromosome numbers of 96 plants and 61 seedlings from the achenes of eight sample plants. The results show that var. pedulus is a swarm of 30 cytotypes with nearly continuous chromosome numbers from 2n = 60 to 2n = 92. Chromosome numbers of 61 seedlings vary from 2n = 61 to 2n = 91, belonging to 18 cytotypes. The chromosome number variation of var. pendulus is highly unusual not only in the A. ageratoides polyploid complex but also in angiosperms. Such an enormous continuous variation of chromosome numbers could have arisen by the combined effect of hybridization, recent origin and high levels of polyploidy. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 378–387.  相似文献   

13.
Analysis of 265 plants derived from 13 sites in the Rokko Mountains shows that the widely distributed eastern AsianEupatorium chinense var.simplicifolium consists of seven cytotypes. These polymorphic karyotypes comprise four levels of ploidy based on X=10 and partial deficiency, occurring either alone or in combination. The polyploid cytotypes exhibit anomalous meiosis and highly variable pollen stainability in contrast to the nearly-normal behaviour of the diploid. The polyploid cytotypes were revealed as being agamospermous. They are readily distinguishable from the diploid cytotypes by several morphological characters and by growth habits closely related to their respective niches. Two or more cytotypes occurred in all sites examined, the most common being the coexistence of triploid and tetraploid cytotypes. The frequencies of occurrence of the pentaploid plants and the cytotypes involving a deficient chromosome were relatively low. While the diploid cytotype is restricted to fragile gravitational slopes and rocky areas which are poor in species and lack tall competitors, the polyploids occur widely in the grasslands, the roadsides or the forest-margins, closely associated with tall grasses and forbs such asMiscanthus sinensis. Based on these data, theE. chinense var.simplicifolium complex is divided into two distinct groups: the diploid cytotype and the polyploid cytotypes.  相似文献   

14.
Patrik Mráz 《Biologia》2007,62(4):507-510
Third part of chromosome number and DNA ploidy level reports from Central Europe comprising whole Carpatho-Pannonian region includes the data for following taxa: Scilla bifolia s. str. (2n = 18), S. bifolia agg. (2n = 36, 54), S. drunensis subsp. drunensis (2n = 36), S. drunensis subsp. buekkensis (2n = 36), S. kladnii (2n = 18) and S. vindobonensis (2n = 18) by J. Kochjarová from Austria, Slovakia and the Czech Republic (nos. 27–32); Campanula macrostachya (2n = ca 32) and Erysimum diffusum (2n = 14, 28) by E. Michalková from Hungary (nos. 33–34). Original unpublished reports should be sent to the editor on following address: patrik.mraz@upjs.sk. For further details and arrangements of reports see the first part (Mráz 2005). Previous parts of the reports were published in 2005 and 2006 (Mráz 2005, 2006).  相似文献   

15.
《Journal of bryology》2013,35(4):557-564
Abstract

The largest bivalent in a population of Dicranum tauricum with the haploid chromosome number of n = 12 was found to divide precociously during meiosis. Since it contained no constitutive heterochromatin, as revealed by a Giemsa C-banding technique, it could not be identified as an H-chromosome. A large body of predominantly facultative heterochromatin was recognized in gametophytic mitotic and pre-meiotic interphase cells and was possibly a composite structure. During these stages, a small block of constitutive heterochromatin was associated with the nucleolus. It was related to a chromosome which, because it was not the smallest member of the complement, could not be called an H-chromosome. Consequently, a reassessment of H- and H-chromosomes in mosses is recommended.  相似文献   

16.
Carthamus divaricatus (Beg. et Vacc.) Pamp., found only in Libya, has 11 pairs of chromosomes, a new chromosome number in the genus. The species is distinct morphologically. It has yellow, purple, and white corollas, yellow pollen, dark-purple striped anthers, horizontal branches, and strongly divaricate outer involucral bracts. The terminal portion of the middle involucral bracts is dentate and reddish brown. It is self-incompatible. Meiosis is regular in the different corolla-color types of C. divaricatus and their intraspecific hybrids. C. divaricatus was crossed to six species with n = 12, to three species with n = 10, to C. lanatus with n = 22, and to two species with n = 32 chromosomes. The morphological characteristics and cross-ability of the parental species plus the pollen viability, seed-set, and meiotic behavior of the hybrids involving C. divaricatus and other Carthamus species indicated that C. divaricatus is very closely related to species with n = 10, closely related to C. lanatus with n = 22, and less closely related to C. tinctorius with n = 12 chromosomes. C. divaricatus seems to be distantly related to C. nitidus (n = 12). It is proposed that C. divaricatus be included provisionally with 10-chromosome species in Section II. Alternative hypotheses for the development of the three basic chromosome numbers are discussed.  相似文献   

17.
To reveal the general cytogeographical pattern of Cyanus section Protocyanus in Europe, DNA ploidy and/or chromosome numbers were newly examined for 160 populations by flow cytometry (450 plants) and/or chromosome counting (30 plants). Furthermore, previously published karyological data were revised (236 records). Our analyses confirmed chromosome counts of 2n = 22 for all newly investigated samples of the C. triumfetti group (the records for C. semidecurrens and C. ternopoliensis are new), C. diospolitanus and C. achtarovii; 2n = 44 for C. montanus and C. mollis; and 2n = 20 for C. lingulatus, C. napulifer, C. nissanus, C. orbelicus, C. thirkei, C. tuberosus and C. velenovskyi. The chromosome count of 2n = 20 is the first report for C. epirotus. The cytotype 2n = 40 was newly recorded for the Crimean endemic C. fuscomarginatus and Calabrian and Greek populations of C. graminifolius. The cytotypes 2n = 20 and 2n = 40 were confirmed for C. pindicola. For the first time triploidy (2n~3x~30) was found in C. nissanus, C. thirkei and in a newly discovered hybrid, C. epirotus × C. graminifolius. Two contrasting ecogeographical patterns emerged: cytotypes derived from the base chromosome number x = 11 (2n = 22, 44) are widespread in northern latitudes and ecologically diverse, whereas cytotypes with x = 10 (2n = 20, 30, 40) are confined to mountains in southern Europe. In general, tetraploids have smaller ranges than diploids. The new combinations Cyanus section Protocyanus (Dobrocz.) Ol?avská comb. nov. and Cyanus ternopoliensis (Dobrocz.) Ol?avská comb. nov. are provided. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 230–257.  相似文献   

18.
The somatic chromosome number of three Japanese species ofIsoetes, I. asiatica, I. japonica andI. sinensis, was determined in 199 individuals from 49 populations. The chromosome number ofI. asiatica was 2n=22, confirming previous reports. However,I. japonica andI. sinensis displayed a diversity in chromosome number. Six cytotypes, 2n=66, 67, 77, 87, 88 and 89, were found inI. japonica; 2n=67, 87, 88 and 89 are new counts in the genusIsoetes. The plants with 2n=66 were the most frequent (72% of total individuals examined) and were distributed throughout Honshu and Shikoku. The plants with 2n=88 occurred in western Honshu and a limited region in northeastern Honshu where the plants with 2n=77 were also found. In contrast, four cytotypes, 2n=44, 65, 66 and 68, were found inI. sinensis. The chromosome numbers ofI. sinensis were reported here for the first time. The plants with 2n=44 occurred only in Kyushu, while the plants with 2n=66 were found throughout a large area of western Japan.  相似文献   

19.
Derivatives of a cross between diploid Zea mays L. and Tripsacum dactyloides (L.) L. (2n = 72) were compared cytologically and morphologically. The objective of this study was to detect introgression from Tripsacum to maize that might have occurred during seven backcross generations with maize. Thirty-three morphological characters were used to analyze variation among aneuploid (20Zm + 2Td), 20-chromosome recovered maize, and the recurrent maize parent plants. Aneuploid and maize checks were extreme types, with 20-chromosome hybrid derivatives being morphologically intermediate. Several recovered maizes clustered with aneuploid plants and these hybrid derivatives have the greatest chance of Tripsacum introgression. Many traits such as endosperm abnormalities, tassel seed, albinos, tunicate glumes, tassel-tipped ears, fasciated and branched ear, and male spikelets between rows of kernels were observed. Although the genetic basis of many traits is unknown, mutations, epistatic effects or expression of Tripsacum chromatin are possible causes. The number of abnormal and tripsacoid traits observed in 20-chromosome recovered maizes indicates genetic transfer from Tripsacum to the maize genome.  相似文献   

20.
Streetman , L. J., and Neal Wright . (U.S.D.A., U. Arizona, Tucson.) A cytological study of black gramagrass, Bouteloua eriopoda. Amer, Jour. Bot. 47 (9) : 786–793. Illus. 1960. The chromosome number, microsporogenesis, embryo-sac development and embryogeny of Bouteloua eriopoda (Torr.) Torr. were investigated. Thirty-four of the 35 accessions had a diploid chromosome complement of 2n=20. One accession had a chromosome number of 2n=28. Meiotic behavior of the 20-chromosome plants was normal, and pollen quality approached 100%. However, metaphase-I and anaphase-I cells of the 28-chromosome plants had up to 8 lagging chromosomes. Pollen quality was approximately 67%; however, the plants were highly sterile. These results furnished evidence of a basic number of x = 10 for the genus Bouteloua. Megagametophyte development was normal, which resulted in an 8-nucleate embryo sac of the “Polygonum” type. Abnormal development of nucellar tissue was not detected, and embryo development did not begin until 12–18 hr. after anthesis. The development of the female gametophyte indicated sexual reproduction. A high degree of morphological variability among and within accessions afforded further evidence for sexual reproduction and suggested that the species was largely cross-fertilized. The proembryo, which began development 12–18 hr. after pollination, lacked a discernible arrangement of cells and sequence of division. The endosperm was free nuclear until 4 days after pollination, when it changed to a cellular form. Differentiation of the proembryo into various embryo structures began 4–5 days after pollination. The embryo matured anatomically 12 days after pollination. Black gramagrass, a perennial range grass native to the desert grasslands of the southwestern United States, is a major species in Arizona, New Mexico, and adjacent parts of Mexico. In many areas of low rainfall this species is the only desirable grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号