首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maheshwari, Satish C., and R. N. Kapil. (U. Delhi, Delhi, India.) Morphological and embryological studies on the Lemnaceae. I. The floral structure and gametophytes of Lemna paucicostata. Amer. Jour. Bot. 50(7): 677–686. Illus. 1963.—In Lemna paucicostata, a locally occurring member of the Lemnaceae, the plant body is represented by a frond which is devoid of lignified elements. The root shows a winged root sheath but does not have root hairs. There are no distinctive layers like the endodermis and xylem. The male archesporium is hypodermal and differentiates normally as in other angiosperms into parietal and sporogenous layers. The tapetum is single-layered and plasmodial. The partition walls of the anther are not derived by sterilization of the sporogenous cells as believed earlier. The microspore tetrads are isobilateral and decussate, the meiotic divisions being successive. The pollen grains are shed at the 3-celled stage. The ovary contains a single hemianatropous, bitegminal and crassinucellar ovule. The development of the embryo sac conforms to the Allium type.  相似文献   

2.
Mohan Ram , H. Y. (U. Delhi, India.) The development of the seed in Andrographis serpyllifolia. Amer. Jour. Bot. 47(3) : 215—219. Illus. 1960.–Andrographis serpyllifolia, a member of the Acanthaceae, has an embryo sac with a bifurcated chalazal part. At the time of fertilization both synergids and antipodal cells disintegrate. Early in its development the endosperm is composed of 3 distinct parts: (1) a binucleate densely cytoplasmic chalazal haustorium; (2) a large binucleate micropylar haustorium; and (3) a central chamber which develops into the endosperm proper. The divisions in the central endosperm chamber are ab initio cellular. A few of the endosperm cells elongate enormously, ramify into the integument and destroy the surrounding cells. These cells have been termed secondary haustoria. Due to the unequal destruction of the integument, the endosperm assumes a ruminate condition. The mature seed is nearly naked because the seed coat is almost completely digested. The embryo has a long suspensor. The micropylar cells of the suspensor are hypertrophied and multinucleate. Contrary to Mauritzon's (1934) belief, the course of endosperm development is markedly different from that observed in Thunbergia. So far, albuminous seeds have been reported only in the subfamily Nelsonioideae. The present investigation provides a case of its occurrence in the Acanthoideae also.  相似文献   

3.
The nucellus of Machaeranthera pattersonii (A. Gray) Greene (Aster pattersonii A. Gray) contains only one megaspore mother cell, and the female gametophyte develops from the chalazal megaspore of a row of four, thus conforming to the Polygonum type of development. These observations are contrary to the older work of Palm. Three nuclear divisions produce the typical eight nuclei with the egg apparatus, primary endosperm cell with two polar nuclei, and two antipodal cells, the micropylar one containing two nuclei. Usually no more antipodal cells are formed, although there is further nuclear division, apparently followed by nuclear fusion. The antipodal cells remain about the same size without forming an antipodal haustorium. Cell division accompanies the first division of the primary endosperm nucleus. The early stages of the embryo resemble those of other Compositae. Machaeranthera tanacetifolia (HBK) Nees also shows the Polygonum type of development of the female gametophyte. It is suggested that Palm may have been working on some species of Erigeron that had been wrongly identified, which would account for the difference in observations.  相似文献   

4.
Within the Monotropaceae. Monotropa hypopitys L. has the widest geographical distribution with sporophytes characterized as achlorophyllous, mycotrophic, and morphologically reduced. General and histochemical observations at the light microscope level concerning the postpollination changes in the numerous anatropous, unitegmic ovules reveal a precise embryogeny and endosperm development. Following double fertilization, the primary endosperm cell produces a lipid-rich cellular endosperm situated between a micropylar and a chalazal haustorium. A cytoplasmically unequal division of the elongated zygote initiates proembryo formation. The degeneration of the basal cell of the proembryo results in an isolated terminal cell that undergoes a cytoplasmically equal, transverse division establishing a two-celled embryo embedded in endosperm. Prior to final seed maturation, proteins replace the lipids as the dominant cytoplasmic reserve material. In contrast with earlier studies that depicted the mature embryo as variable in structure, here the embryo is shown to be consistently uniform within and between those populations sampled from North America and Europe.  相似文献   

5.
Oľga Erdelská 《Planta》1968,84(1):43-47
Summary Growth of the zygote and the first phases of the endosperm development of Jasione montana L. in isolated intact ovules was studied. The zygote begins to grow simultaneously with the first division of the primary endosperm nucleus. It forms a long outgrowth into the embryo sac. A distinct oil droplet occurs in the basic part of the zygote, which disappears after the development of the embryo is advanced.The nucleus of the zygote shifts to the top of the outgrowth of the zygote before the prolongated growth of the zygote is completed. The first mitosis in the embryo takes plase in this position at the time when there are 8–16 cells in the endosperm.The endosperm division as it can be seen in the living material is described.  相似文献   

6.
A study was made of the ontogeny of the achene of Polygonum pensylvanicum L. from fertilization to maturity. The proembryo is classified as the Polygonum Variation, Asterad Type. Cotyledons are initiated three days after anthesis, and by the fifth day procambium is present in the embryo axis. At approximately seven days after anthesis, the embryo begins to curve and occupy a marginal position in the ovary. By ten days the first foliage leaf primordium is initiated at the stem apex of the embryo. At maturity the embryo consists of two cotyledons, a plumule composed of the stem apex and one leaf primordium, and a hypocotyl with a well-developed radicle. Endosperm nuclei begin to divide before the first division of the zygote. Cell wall formation begins in the endosperm at the micropylar end of the embryo sac and proceeds toward the chalazal region. By the fifth day the endosperm is completely cellular, except for a basal projection; and a peripheral meristem has been established. At approximately ten days the peripheral meristem ceases periclinal cell division and becomes the aleurone. At the time of fertilization the ovary wall has its full complement of cell layers. The walls of the outermost cells elongate and become convoluted. Subsequent thickening and lignification of these cell walls produce the hard epicarp of the mature achene.  相似文献   

7.
Cytological and histological studies on postfertilization development of ovules were carried out in six facultatively apomictic Citrus cultivars. At the time of anthesis, adventive embryo initial cells (AEICs) were detected mainly in the cell layers of the nucellus around the chalazal half of the embryo sac. During the approximately 40 days rest period of the AEICs after fertilization, rapid cell division and enlargement in the endosperm and the chalazal half of the nucellus resulted in the split of AEICs into several separated areas forming the micropylar, lateral and chalazal islands surrounding the enlarging embryo sac. Both in diploid seeds with triploid endosperm and triploid seeds with pentaploid endosperm, the AEICs located in the micropylar half successfully developed into adventive embryos. In diploid seeds, almost all AEICs located in the chalazal half did not develop beyond the initial-celled stage, while in the triploid seeds, those located in the chalazal half occasionally developed into cotyledonary embryos. In seeds with aborted endosperm, the AEICs located in the chalazal half often developed into cotyledonary embryos. The chalazal expiants from normal seeds produced a large number of embryos in vitro. Four results can be summarized from these studies on adventive embryogenesis as follows: 1) All AEICs are initiated prior to anthesis. 2) Whether or not the AEICs successfully developed into adventive embryos is dependent upon their position in the seed. 3) The farther the AEICs are located from the micropylar end, the more adventive embryogenesis is suppressed by endosperm. 4) The degree of adventive embryogenesis in the chalazal half is affected by time and extent of malfunction of the endosperm. Under natural conditions, these regulatory systems of adventive embryogenesis contribute to high production of zygotic seedlings in apomictic Citrus species and cultivars.  相似文献   

8.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. I. Ovule and embryo. Amer. Jour. Bot. 47(1): 8–14. Illus. 1960.—Abutilon theophrasti Medic, is a widespread annual weed which produces an abundance of seed in capsules which mature within 20 days after pollination. Ovule differentiation may be observed at least 8 days before anthesis when a sporogenous cell becomes evident and 2 integuments are initiated. An 8-nucleate embryo sac is produced from the chalazal megaspore approximately 2 days before anthesis. The outer integument of the mature campylotropous ovule consists of 2 cell layers, the inner integument has 6 to 15 cell layers. The initially free-nucleate endosperm becomes cellular betwen 3 and 7 days after pollination. At maturity a thin layer of gelatinous endosperm encases the embryo. The Asterad-type proembryo of Abutilon has a stout suspensor and develops rapidly. Four days after pollination cotyledons are initiated; 4 days later a leaf primordium is evident. Fifteen days after pollination the embryo, which has essentially completed its growth, consists of a large hypocotyl with root promeristem and root cap at its basal end, and 2 flat, folded, leaflike cotyledons enclosing a small epicotyl at its upper end. The epicotyl consists of an embryonic leaf and a stem apex.  相似文献   

9.
Fertilization and embryogeny in Agapanthus praecox ssp. orientalis are described for the first time, and embryogenic characters of Agapanthus are discussed. The main results are: (1) The pollen tube enters the embryo sac and discharges two sperm 44?C48?h after pollination. (2) The sperm fuse with the egg cell and polar nuclei, forming zygote and primary endosperm nucleus, approximately 50?h after pollination. The zygote then enters a short period of dormancy. (3) Seven days after pollination, the zygote starts division. The first division of the zygote is transversal. (4) The embryo undergoes globular stage, rod-shaped stage, and finally forms a monocotyledonous embryo. (5) The suspensor cells are ephemeral and degenerate at the globular embryo stage. (6) Endosperm cells contain massive starch grains as nutrition for embryo development. (7) Embryogeny conforms to the Onagrad type, and endosperm formation is of the nuclear type; the whole process of embryogeny and endosperm development needs approximately 60?days in A. praecox ssp. orientalis. (8) Dicotyledonous together with monocotyledonous forms of embryo morphogenesis in Agapanthus supports the concept of homology of monocots and dicot cotyledons.  相似文献   

10.
利用石蜡切片技术对百合科植物黄花油点草[Tricyrtis maculata(D.Don)Machride]双受精、胚及胚乳发育进行了研究,以明确其胚胎发育的特征,为百合科植物的系统研究提供生殖生物学资料。结果表明:(1)黄花油点草为珠孔受精;进入胚囊的2枚精子分别与卵细胞和中央细胞进行正常的双受精,其受精作用属有丝分裂前型。(2)受精后的初生胚乳核立即分裂,其发育方式为核型胚乳;早期的游离胚乳核沿胚囊的边缘分布,胚囊中央部位主要为胚乳细胞质,随着游离胚乳核数量的增加,胚乳核慢慢充满整个胚囊;当发育至球形胚早期阶段,在各胚乳核周围产生胚乳细胞壁,形成完整的胚乳细胞。(3)合子有较长的休眠时间,胚的发育方式为茄型;合子第一次有丝分裂为横裂,分裂后形成基细胞和顶细胞;基细胞经过3次横裂,形成一列胚柄细胞;顶细胞经过分裂形成胚体,依次形成球形胚、棒状胚和盾形胚。(4)种子成熟时胚无器官分化;成熟种子由种皮、胚和胚乳三部分组成。  相似文献   

11.
Monotropa uniflora is an achlorophyllous angiosperm consisting of a mycorrhizae-dependent root system that produces floriferous, aerial shoots. Each of the numerous, minute ovules is anatropous, unitegmic, and contains a Polygonum type female gametophyte. Following double fertilization, a lipid-rich, cellular endosperm develops in association with both chalazal and micropylar haustoria. The vacuolate zygote elongates prior to a cytoplasmically unequal division resulting in a small terminal cell subtended by a larger, vacuolate basal cell. The basal cell eventually degenerates, isolating the terminal cell which is completely surrounded by endosperm. The terminal cell undergoes a cytoplasmically equal transverse division resulting in a two-celled embryo embedded in endosperm. In final stages of seed maturation, lipids decrease and reserve proteins increase in the cytoplasm of both the endosperm and embryo. The morphological reduction of the mature embryo may be associated with a specialized mode of nutrition.  相似文献   

12.
本研究对单瓣刺梨胚及胚乳的发育过程进行了观察,获得如下主要结果:1.刺梨胚的发育属于紫菀型的一种变异类型。原胚发育早期,在胚体顶端具有明显的胚芽原细胞。成熟胚为典型的双子叶植物胚的形态,在子叶中贮藏大量的蛋白质粒。2.刺梨的胚乳属核型。经游离核时期以后形成胚乳细胞。紧邻胚囊周界壁的表层胚乳细胞可以进行平周分裂,产生层叠状的胚乳周缘层。此种后形成的胚乳,我们称之为次生胚乳。当次生胚乳形成时,其余的胚乳细胞逐渐解体,最后几乎完全消失。次生胚乳只在合点处解体,其余保留至种子成熟。3.发现了开花后一些胚珠中无胚或胚和胚乳在发育早期退化的现象,可认为是刺梨种子不育的一个重要原因。  相似文献   

13.
宁夏枸杞的胚胎发生属茄型,由顶细胞参与胚体的形成,基细胞仅形成六细胞胚柄。胚乳发育为细胞型,但也观察到少数核型胚乳的现象。初步探讨了核型胚乳与细胞型胚乳的关系。  相似文献   

14.
The development of the embryo and endosperm of Nelumbo nucifera Gaertn can be summarized as follows: 1. Embryogenesis of N. nucifera belongs to Solanad type; the 1st mitotic division of the zygote takes place later than that of the primary endosperm nucleus. 2. The development of endosperm basically conforms to the Helobial endosperm. After fertilization, the primary endosperm nucleus divides first transversely. This division results in the formation of two cells. The wall of this division is a little oblique to the longitudinal axis of the embryo sac. In accordance with the character of the endospermic development, it can be divided into, three stages: (1) two-celled endosperm stage, (2) multicellular endosperm stage, and (3) the stage of the endospermic nutrition being absorbed and cells atrophy. The developments of the embryo and endosperm are well correlated. This relation is relatively stable. 3. The cotyledons of the mature embryo are comparatively developed, but the radicle is extremely reduced. 4. As the seed is ripening, a thin membrane remains outside the plumule, which is the remainder of the endosperm. Therefore, the seed of N. nucifera is exalbuminous.  相似文献   

15.
The embryo of Rhizophora mangle L. is initially attached to the integument by a long multiseriate suspensor. Its basal cells lyse, and intrusive growth of the endosperm envelops the embryo, forces the micropyle open, and often carries the embryo out of the integument. Thus, “germination” is effected by growth of the endosperm rather than of the embryo. The surface of the endosperm differentiates into a layer of peculiar transfer cells. The cotyledonary body initiates as a toroidal primordium, which later becomes lobed; most of the free portions ultimately fuse. After “germination,” the axis of the viviparous seedling grows by a diffuse intercalary meristem below the cotyledonary node. Before seedling abscission, the shoot apex produces three pairs of leaves, the first of which aborts, leaving the rest of the plumule protected by their stipules. The (immersed) radicle apex is nearly inactive, but lateral roots arise early in seedling development; these are usually the first or only roots to grow during establishment. Ten provascular strands “differentiate” in the cotyledons; a hollow provascular cylinder develops in the hypocotyl. Initial vascular differentiation in the latter is of many alternate poles of xylem and phloem; later, de novo differentiation of metaxylem opposite the protophloem poles, and vice versa, produces collateral bundles. Xylem maturation is endarch over most of the length of the hypocotyl, but tangential and random series of metaxylem vessels occur in the radicle end.  相似文献   

16.
A T-DNA-tagged, embryo-defective Arabidopsis thaliana mutant, fist, was identified and shown to exhibit defects in nuclear positioning and cell division orientation beginning at the four-cell stage of the embryo proper. Cell division orientation was randomised, with each embryo exhibiting a different pattern. Periclinal divisions did not occur after the eight-cell embryo proper stage and fist embryos lacked a histologically distinct protoderm layer. Terminal embryos resembled globular-stage embryos, but were a disorganised mass containing 30–100 cells. Some terminal embryos (5%) developed xylem-like elements in outer surface cells, indicating that the fist mutation affects radial pattern. A soybean β-conglycinin seed storage protein gene promoter, active in wild-type embryos from heart stage to maturity, was also active in terminal fist embryos despite their disorganised globular state. This indicated that some pathways of cellular differentiation in fist embryos proceed independently of both organised division plane orientation and normal morphogenesis. Endosperm morphogenesis in seeds containing terminal fist embryos was arrested at one of three distinct developmental stages and appeared unlinked to fist embryo morphogenesis. The β-conglycinin seed storage protein gene promoter, normally active in cellularised wild-type endosperm, was inactive in fist endosperm, indicating abnormal development of fist endosperm at the biochemical level. These data indicate that the fist mutation, either directly or indirectly, results in defects in cell division orientation during the early stages of Arabidopsis embryo development. Other aspects of the fist phenotype, such as defects in endosperm development and radial pattern formation, may be related to abnormal cell division orientation or may occur as pleiotropic effects of the fist mutation. Received: 15 July 1997 / Accepted: 9 September 1997  相似文献   

17.
Summary Fertilization and early embryo and endosperm development were examined in Phaseolus vulgaris x P. acutifolius, P. vulgaris x P. lunatus crosses and their reciprocals. The number and length of pollen tubes were not different between selfings and interspecific crosses. Fertilization was completed in all matings and the time of fertilization was maternally dependent which may reflect the degree of maturation of embryo sacs at pollination. A large difference between reciprocal crosses was found in the time of endosperm and embryo division in relation to the time of fertilization. When P. vulgaris was the female parent and P. acutifolius the male parent, endosperm division occurred at the same time as in P. vulgaris upon selfing, while in P. vulgaris x P. lunatus crosses the time of endosperm division was intermediate as compared with the two parents. The time lapse between fertilization and endosperm and embryo division in P. acutifolius x P. vulgaris crosses was longer than in either parent upon selfing. In P. lunatus x P. vulgaris crosses, endosperm division occurred in only 7–12% of the ovules at 72 hours after pollination. Embryo development in these ovules was limited to the four cell stage although the endosperm was at the free nuclei stage. The severe delay in embryo and endosperm divisions may be the major cause of early pod abscission in P. lunatus x P. vulgaris crosses.Technical paper No. 4929 of the Oregon Agricultural Experiment Station. Research was supported by the Oregon Agricultural Experiment Station, the Research Council of Oregon State University (NIH Biomedical Research Support Grand RR07079) and the Processor Research Council of Oregon. A.R. is supported by an African Graduate Fellowship from the African-American Institute.  相似文献   

18.
采用透射电镜技术对大车前(Plantago major L.)胚乳发育的超微结构进行了研究。结果表明:(1)大车前为细胞型胚乳;初生胚乳核经一次横分裂产生1个珠孔室细胞和1个合点室细胞;珠孔室两次纵向分裂一次横向分裂形成2层8个细胞,位于上层的4个细胞发育为4个珠孔吸器,位于下层的4个细胞发育为胚乳本体;合点室细胞进行一次核分裂,发育为两核的合点吸器。(2)珠孔吸器呈管状插入珠被组织,珠孔端细胞壁加厚呈现少量分支并具有壁内突,壁内突周围细胞质里分布着大量线粒体、粗面内质网、高尔基体、质体等,细胞核与核仁明显,细胞质浓厚,代谢活动旺盛;球胚期,珠孔吸器的体积呈现最大值,珠孔吸器周围的珠被组织均被水解,形成明显的空腔。珠孔吸器从珠被组织吸收并转运营养物质至胚乳本体,参与胚乳的构建与营养物质的贮藏。球胚后期,珠孔吸器逐渐退化。(3)4个胚乳本体原始细胞具旺盛的分生能力,经不断的平周与垂周分裂增加胚乳细胞数目,使胚乳本体呈现圆球体状,并将胚包围其中;珠孔吸器、合点吸器以及珠被绒毡层吸收转运的营养物质贮存在胚乳本体;球胚后期,随着胚柄的退化,胚体周围的胚乳细胞被水解,为发育的胚所利用。(4)合点吸器的2个细胞核与核仁巨大,线粒体、质体、高尔基体、内质网主要绕核分布,液泡化明显;胚体与胚乳本体的体积增大,逐渐将合点吸器向胚珠合点部位挤压,合点吸器周围的合点组织逐渐被水解,形成巨大空腔。合点吸器自珠心组织吸收并转运营养物质至胚乳本体,参与胚乳的结构构建与营养物质的贮藏。球胚后期,合点吸器逐渐失去功能,呈现退化状态。  相似文献   

19.
Arceuthobium douglasii develops a dome-like structure, the ovarian papilla, in which 2 megasporocytes are formed. The papilla is not a true ovule, for no integuments are formed, and it is forced aside by the developing endosperm. Megasporocytes are differentiated in the spring, but meiosis does not occur until the following spring. A tetrasporic embryo sac is developed which is 8-nucleate at maturity. Pollination and fertilization occur approximately 13–14 months after initiation of the inflorescence. Only 1 of the 2 embryos develops after fertilization. After fertilization, the embryo sac segregates into 2 parts, one containing the zygote and the disintegrating synergids, the other the primary endosperm nucleus and the degenerating antipodals. This primary endosperm cell elongates toward the base of the ovarian papilla. Cytokinesis then forms an endosperm cell, adjacent to the zygote, and a haustorial cell. The haustorial cell forms several tiers of cells which persist during the development of the embryo and endosperm. The zygote, while still contained within the ovarian papilla, divides, forming a 2-celled sphere. It remains unchanged until after it is conveyed out of the ovarian papilla by the developing endosperm. The development of the embryo and endosperm is arrested in the autumn approximately 3 months after their initiation. They complete their development the following spring and summer.  相似文献   

20.
The maize (Zea mays L.) endosperm consists of an epidermal like layer of isodiametric aleurone cells surrounding a central body of starchy endosperm cells. In disorgal1 (dil1) and disorgal2 (dil2) mutants the control of the mitotic division plane is relaxed or missing, resulting in mature grains with disorganized aleurone layers. In addition to orientation of the division plane, both the shape and size of the aleurone cells are affected, and often more than one layer of aleurone cells is present. Homozygous dil1 and dil2 grains are shrunken due to reduced accumulation of starchy endosperm and premature developmental arrest of the embryo, and mature mutant grains germinate at a very low rate and fail to develop into plants. However, homozygous mutant plants can be obtained through embryo rescue, revealing that both mutants have an irregular leaf epidermis as well as roots with a strongly reduced number of root hairs and aberrant root hair morphology. Our results suggest the presence of common regulatory mechanisms for the control of cell division orientation in the aleurone and plant epidermis.Abbreviations DAP days after pollination - dek defective kernel mutant - dil disorganized aleurone layer mutant - GUS -glucuronidase - LM light microscopy - PPB pre-prophase band - SEM scanning electron microscopy - TUSC Trait Utility System for Corn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号