首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When exotic plant species share pollinators with native species, competition for pollination may lower the reproductive success of natives by reducing the frequency and/or quality of visits they receive. Exotic species often become numerically dominant in plant communities, and the relative abundance of these potential competitors for pollination may be an important determinant of their effects on the pollination and reproductive success of co-occurring native species. Our study experimentally tests whether the presence and abundance of an invasive exotic, Lythrum salicaria L. (Lythraceae), influences reproductive success of a co-flowering native species, Mimulus ringens L. (Phrymaceae). We also examine the mechanisms of competition for pollination and how they may be altered by changes in competitor abundance. We found that the presence of Lythrum salicaria lowered mean seed number in Mimulus ringens fruits. This effect was most pronounced when the invasive competitor was highly abundant, decreasing the number of seeds per fruit by 40% in 2006 and 33% in 2007. Reductions in the number of seeds per fruit were likely due to reduced visit quality resulting from Mimulus pollen loss when bees foraged on neighboring Lythrum plants. This study suggests that visit quality to natives may be influenced by the presence and abundance of invasive flowering plants.  相似文献   

2.
Judy L. Stone 《Oecologia》1996,107(4):504-512
In this paper I report components of effectiveness for pollinators of a tropical distylous shrub, Psychotria suerrensis (Rubiaceae), which is visited by a variety of bees, wasps, and butterflies, and by two species of hummingbirds. In the field, I measured the following components of effectiveness: frequency of visits, evenness of visits across plants, and diurnal pattern of visits. I also used flight-cage experiments to compare pollentransfer abilities of euglossine bees and heliconiid butterflies. Euglossine bees visited more frequently, visited earlier in the day, and visited a higher proportion of plants in the population than did other taxa. In flight cage experiments, bees and butterflies transferred similar amounts of pollen overall, but bees transferred significantly more inter-morph (compatible) pollen. For each component measured, euglossine bees appeared to be the most effective pollinators.  相似文献   

3.
This study examines the reproductive biology of Linum lewisii Pursh. (Linaceae), a polyphilic species visited by small bees and generalist flies in montane Colorado. L. lewisii plants growing at different sites experience large temporal and spatial variations in pollinator visits. Their ability to attract both dipteran and hymenopteran pollinators allows pollination under varying conditions as pollinator pool composition changes. Although L. lewisii is self-compatible, hand-pollination studies indicate that insects are required for seed production. The relative effectiveness of fly and bee pollinators is assessed in terms of per-visit pollen deposition. Insect visitation patterns are combined with per-visit effectiveness data to evaluate the relative importance of different pollinator groups. Overall, bees tend to be more effective than flies in depositing pollen. However, in many instances flies appear to be responsible for more pollen deposition due to their higher visitation rates.  相似文献   

4.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens.  相似文献   

5.
Pollination biology of 41 plants species of 21 families blooming in the forest understory was investigated in a lowland mixed diplerocarp forest in Lambir Hills National Park, Sarawak. Among these species, 29 species (71%) were pollinated by bees, four (10%) by nectariniid birds, three by small dipterans, and others by moths, butterflies, syrphid flies, wasps, and beetles. The 29 bee-pollinated species consisted of five distinct pollination guilds: ten species pollinated by medium traplining bees (two Amegilla species), nine by small traplining bees (three halictid and a xylocopine species), two by stingless bees and beetles, seven by stingless bees, and one by megachilid bees. The bees constituting the first two guilds were shade-loving, swiftly flying, long-tongued trapliners. Proboscis lengths of these pollinators correlated with flower depth of the host plant. Pollination systems in the forest understory were distinguished from that in the canopy by the prevalence of specific interactions, the number of traplining solitary bees, and lack of pollination systems by mass-recruiting eusocial bees, large Xylocopa bees, thrips, bats, and wind. These characteristics are largely similar between the Palaeotropics and the Neotropics through convergence of nectarivorous birds (spiderhunters vs. hummingbirds) and traplining bees (Amegilla vs. euglossine bees).  相似文献   

6.
Pollination syndromes are defined as suites of floral traits evolved in response to selection imposed by a particular group of pollinators (e.g., butterflies, hummingbirds, bats). Although numerous studies demonstrated their occurrence in plants pollinated by radically different pollinators, it is less known whether it is possible to identify them within species pollinated by one functional pollinator group. In such a framework, we expect floral traits to evolve also in response to pollinator subgroups (e.g., species, genera) within that unique functional group. On this, specialised pollination systems represent appropriate case studies to test such expectations. Calceolaria is a highly diversified plant genus pollinated by oil‐collecting bees in genera Centris and Chalepogenus. Variation in floral traits in Calceolaria has recently been suggested to reflect adaptations to pollinator types. However, to date no study has explicitly tested that observation. In this paper, we quantitatively test that hypothesis by evaluating the presence of pollination syndromes within the specialised pollination system formed by several Calceolaria and their insect pollinators. To do so, we use multivariate approaches and explore the structural matching between the morphology of 10 Calceolaria taxa and that of their principal pollinators. Our results identify morphological matching between floral traits related to access to the reward and insect traits involved in oil collection, confirming the presence of pollinator syndromes in Calceolaria. From a general perspective, our findings indicate that the pollination syndrome concept can be also extended to the intra‐pollinator group level.  相似文献   

7.
Onion (Allium cepa L.) is protandrous in nature and requires cross‐pollination to avoid inbreeding. The pollination potential of native bees (Hymenoptera) and true flies (Diptera) was assessed in the perspective of finding the best pollinators for onion cross‐pollination and seed multiplication. The community of pollinators was composed of four bee species and twelve true fly species. Episyrphus balteatus, Eupeodes sp., Musca domestica and Eristalinus aeneus were the most abundant pollinators. The maximum pollinator activity was observed from 12 to 24 days after opening of the flowers. The pollination effectiveness of tested bees (Apis dorsata and Apis florea) was greater than true flies (E. balteatus, Eupeodes sp., M. domestica, E. aeneus and Callihoridae sp.) in terms of Spears values.  相似文献   

8.
The effects of floral morphology on rates of pollen removal and deposition by different pollinators in generalist plant species are not well known. We studied pollination dynamics in wild radish, Raphanus raphanistrum, a plant visited by four groups of pollinators: honey bees, small native bees, butterflies, and syrphyd flies. The effects of anther position and other factors on pollen removal during single visits by all four pollinator taxa were measured. Flowers with high anther exsertion (i.e., anthers placed higher above the opening of the corolla tube) tended to have the highest numbers of pollen grains removed, but this effect was strongest for honey bees and butterflies. For all pollinator taxa, pollen removal increased with the number of pollen grains available on a flower and whowed a positive, decelerating relationship with the duration of the visit. The effects of stigma position and other factors on pollen deposition during single visits by honey bees and butterflies were also studied. The nectar-feeding butterflies had a higher pollination efficiency (percentage of pollen grains removed from anthers that were subsequently deposited on a stigma) than the nectar- and pollen-feeding honey bees. Flowers with intermediate stigma exsertion had the highest numbers of pollen grains deposited on their stigmas by butterflies, but stigma exsertion had no effect on deposition by honey bees. For both butterflies and honey bees, pollen deposition on the recipient flower increased with the amount of pollen removed from the donor flower, and there was a positive, decelerating relationship between deposition and time spent at the flower; these results are analogous to those for pollen removal. The effects of anther and stigma exsertion on pollen removal and denosition did not fit predictions based on patterns of floral correlations, but results for morphology, pollen availability, time spent per visit, and pollinator efficiency are in broad agreement with previous studies, suggesting the possible emergence of some general rules of pollen transfer.  相似文献   

9.
Flowers have developed different strategies to attract pollinators through visual or olfactory signals. Most flowers offer pollinators a reward (e.g. nectar and pollen) for the pollination service. However, one‐third of Orchidaceae have been shown not to provide a reward. Calanthe are terrestrial orchids distributed throughout China, Nepal, Japan and tropical Asia. Despite its high diversity, the pollination biology of Calanthe remains largely unknown, even though it is an important aspect of plant conservation. In the study, through field surveying, there were three Hesperiidae butterflies pollinating two species of Calanthe and the pollination behavior differed between the two species of Calanthe, which might lead to different fruit setting rates. There was no nectar in the flowers of the two species, indicating deceptive pollination. Using a glass cylinder experiment, it was deduced that the two species of Calanthe were most likely to attract pollinators by generalized food deception. Interestingly, Hesperiidae butterflies were traditionally thought to be nectar thieves and generally do not transmit pollinia. However, our findings showed that, in this case, the thieves were deceived by the plants and pollinated them for free.  相似文献   

10.
van Dulmen  Arthur 《Plant Ecology》2001,153(1-2):73-85
The main objective of this investigation was to study the pollination characteristics of two types of Amazonian rain forest at plant community level. Seasonally inundated forest was compared with upland (tierra firme) forest. The study focused on plant species in the canopy. The pollination spectra show that in both forests most canopy trees and lianas are pollinated by small bees, large bees, butterflies or by small, relatively unspecialized insects. In the upland forest small bees are the most important pollinators (32% of all species of trees and lianas are pollinated by them), whereas large bees are predominant in the floodplain (22%). Other pollinators, like hummingbirds, bats, moths, and beetles are less common (>10%), but always somewhat more important in the flood plain than in the upland forest. Bees are the most common pollinators of epiphytes. In the flood plain forest, flies are also important as epiphyte pollinators (19%), whereas in the upland forest hummingbirds pollinate more epiphytes. The phenological patterns are quite similar in both the upland and the flood plain. We found a peak in flowering in the transition period between the wet and the dry season. Flowering activity was lowest during the wet season. Differentiation in sexual systems was correlated with life form. Dioecy and monoecy were found mostly among tree species. Most species of all life forms though were hermaphroditic. No difference with respect to the relative importance of sexual systems was found between the two forest types.  相似文献   

11.
When co‐occurring plant species overlap in flowering phenology they may compete for the service of shared pollinators. Competition for pollination may lower plant reproductive success by reducing the number of pollinator probes or by decreasing the quality of pollen transport to or from a focal species. Pair‐wise interactions between plants sharing pollinators have been well documented. However, relatively few studies have examined interactions for pollination among three or more plant species, and little is known about how the outcomes and mechanisms of competition for pollination may vary with competitor species composition. To better understand how the dynamics of competition for pollination may be influenced by changes in the number of competitors, we manipulated the presence of two competitors, Lythrum salicaria and Lobelia siphilitica, and quantified reproductive success for a third species, Mimulus ringens. Patterns of pollinator preference and interspecific transitions in mixed‐species arrays were significantly influenced by the species composition of competitor plants present. Both pair‐wise and three‐species competition treatments led to a similar ~ 40% reduction in Mimulus ringens seed set. However, the patterns of pollinator foraging we observed suggest that the relative importance of different mechanisms of competition for pollination may vary with the identity and number of competitors present. This variation in mechanisms of competition for pollination may be especially important in diverse plant communities where many species interact through shared pollinators.  相似文献   

12.
  • Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci.
  • We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents.
  • The flowers of cambuci were self‐incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds.
  • This study describes the first scent‐mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
  相似文献   

13.
The pollinators of 29 ginger species representing 11 genera in relation to certain floral morphological characteristics in a mixed-dipterocarp forest in Borneo were investigated. Among the 29 species studied, eight were pollinated by spiderhunters (Nectariniidae), 11 by medium-sized Amegilla bees (Anthophoridae), and ten by small halictid bees. These pollination guilds found in gingers in Sarawak are comparable to the pollination guilds of neotropical Zingiberales, i.e., hummingbird-, and euglossine-bee-pollinated guilds. Canonical discriminant analysis revealed that there were significant correlations between floral morphology and pollination guilds and suggests the importance of plant–pollinator interactions in the evolution of floral morphology. Most species in the three guilds were separated on the plot by the first and second canonical variables. Spiderhunter-pollinated flowers had longer floral tubes, while Amegilla-pollinated flowers had wider lips than the others, which function as a platform for the pollinators. Pistils and stamens of halictid-pollinated flowers were smaller than the others. The fact that gingers with diverse morphologies in a forest with high species diversity were grouped into only three pollination guilds and that the pollinators themselves showed low species diversity suggests that many species of rare understory plants have evolved without segregating pollinators in each pollination guild.  相似文献   

14.
Non‐rewarding plants use a variety of ruses to attract their pollinators. One of the least understood of these is generalized food deception, in which flowers exploit non‐specific food‐seeking responses in their pollinators. Available evidence suggests that colour signals, scent and phenology may all play key roles in this form of deception. Here we investigate the pollination systems of five Eulophia spp. (Orchidaceae) lacking floral rewards. These species are pollinated by bees, notably Xylocopa (Anthophorinae, Apidae) or Megachile (Megachilidae) for the large‐flowered species and anthophorid (Anthophorinae, Apidae) or halictid (Halictidae) bees for the small‐flowered species. Spectra of the lateral petals and ultraviolet‐absorbing patches on the labella are strongly contrasting in a bee visual system, which may falsely signal the presence of pollen to bees. All five species possess pollinarium‐bending mechanisms that are likely to limit pollinator‐mediated self‐pollination. Flowering times extend over 3–4 months and the onset of flowering was not associated with the emergence of pollinators, some of which fly year round. Despite sharing pollinators with other plants and lacking rewards that would encourage fidelity, the Eulophia spp. exhibited relatively high levels of pollen transfer efficiency compared with other rewarding and deceptive orchids. We conclude that the study species employ generalized food deception and exploit food‐seeking bees. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 713–729.  相似文献   

15.
Determining how pollinators visit plants vs. how they carry and transfer pollen is an ongoing project in pollination ecology. The current tools for identifying the pollens that bees carry have different strengths and weaknesses when used for ecological inference. In this study we use three methods to better understand a system of congeneric, coflowering plants in the genus Clarkia and their bee pollinators: observations of plant–pollinator contact in the field, and two different molecular methods to estimate the relative abundance of each Clarkia pollen in samples collected from pollinators. We use these methods to investigate if observations of plant–pollinator contact in the field correspond to the pollen bees carry; if individual bees carry Clarkia pollens in predictable ways, based on previous knowledge of their foraging behaviors; and how the three approaches differ for understanding plant–pollinator interactions. We find that observations of plant–pollinator contact are generally predictive of the pollens that bees carry while foraging, and network topologies using the three different methods are statistically indistinguishable from each other. Results from molecular pollen analysis also show that while bees can carry multiple species of Clarkia at the same time, they often carry one species of pollen. Our work contributes to the growing body of literature aimed at resolving how pollinators use floral resources. We suggest our novel relative amplicon quantification method as another tool in the developing molecular ecology and pollination biology toolbox.  相似文献   

16.
Increasing cultivation of oilseed rape may have consequences for pollinators and wild plant pollination. By providing pollinating insects with pollen and nectar, oilseed rape benefits short-tongued, generalist insect species. Long-tongued bumble bee species, specialized to other flower types, may instead be negatively affected by increased competition from the generalists (e.g. due to nectar-robbing of long-tubed flowers) after oilseed rape flowering has ceased. We expected that the increased abundance of short-tongued pollinators and reduced abundance of long-tongued bumble bees in landscapes with a high proportion of oilseed rape would impact the pollination of later flowering wild plant species. In addition, we expected contrasting effects on plants pollinated by short-tongued pollinators and those pollinated by long-tongued bumble bees. We predicted that semi-natural grasslands, which provide insects with alternative floral resources, would reduce both negative and positive effects on pollination by mitigating competition between pollinators.In 16 semi-natural grasslands, surrounded by agricultural landscapes, with a variation in both the proportion of oilseed rape and the proportion of semi-natural grassland within 1 km, we studied reproductive output in two species of potted plants with different pollination strategies: the woodland strawberry (Fragaria vesca) and red clover (Trifolium pratense). The first species is mainly pollinated by short-tongued pollinators, e.g. hoverflies and solitary bees, and the latter by long-tongued bumble bees. Both species flowered after oilseed rape.Strawberry weight was higher in landscapes with a high proportion of oilseed rape, but only in landscapes with a low proportion of semi-natural grassland. The proportion of developed achenes was also positively related to the proportion of oilseed rape, but only during the latest flowering period. In contrast, red clover seed set was unrelated to the proportion of oilseed rape. Whereas the discrepancy between the two strawberry measurements calls for further research, this study suggests that oilseed rape can affect later flowering plants and that the impact differs among species.  相似文献   

17.
Jennersten  Ola 《Oecologia》1984,63(1):80-89
Summary Nectar plant utilization by butterflies was compared with the abundance of flowering plants on some SW Swedish meadows. The transportation of pollen grains by individual butterflies was analysed using a scanning electron microscope.For the majority of plant species, butteflies were of minor importance as pollinators. Some flowers with protruding sexual organs, e.g. Knautia arvensis, when heavily utilized by butterflies, might also be pollinated by these.For Dianthus deltoides and Viscaria vulgaris, butterfly pollination was found to be important.Several butterfly species, e.g. Plebicula amanda, visited legumes regularly. In spite of this, legume pollen was rarely transported by the butterflies. This suggests these butterflies act as nectar robbers among the legumes.  相似文献   

18.
In the tropics the contribution of bees as pollinators of important economic indigenous crops remains largely undocumented. We studied the diversity of bee species visiting indigenous tomato (Solanum lycopersicon) and habanero pepper (Capsicum chinense) in subtropical Yucatán, México. The contribution of two native bees, Exomalopsis (E) and Augochloropsis (AG) was compared with that of the introduced Africanized Apis mellífera (HB) for pollinating unvisited flowers in both crops. Apis mellífera and stingless bees were dominant in habanero pepper but solitary bee species were important visitors of tomato. In spite of both crops being autogamic, there was a significant contribution of native bees for pollination of both tomato and habanero pepper. The comparison of fruit weight, number of seeds, and a pollination index based on the latter showed that E and AG were more effective pollinators compared to HB in both crops (ca. Spear’s index of ca. 0.7 vs. 0.35 respectively). In tomato, a further evaluation of the contribution to pollination provided by the three bee species was made using the rate of visits to flowers. Although E and AG were the most efficient pollinators at single flower visits in tomato, none of the three species (including HB) were able to provide single visits to all flowers per unit time to the crop. Our results underline the importance of maintaining diverse assemblages and abundant populations of bee species that can synergically contribute to the productivity of tomato and hot pepper in the Neotropics.  相似文献   

19.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

20.
Besides its importance as an ornamental plant, Justicia betonica L. is also used as a medicinal plant for the treatment of several human disorders. However, the population size and abundance of the plant species are very low in Indian states, including West Bengal. The breeding system and pollination ecology of J. betonica are still unclear. Therefore, some reproductive aspects were investigated in order to provide important information for the sustainability of the species. The flowering duration spanned from December to May, with its peak in February–March. Flower opening time was much earlier (5.00–8.00 a.m.) on a hot day (in April–May) than on a cold day (10.00 a.m.–12.00 p.m. in December–January). The time of anther dehiscence coincided with the flower opening time; however, the stigma became receptive later. The plant species is self-compatible but dependent on pollinators for fruit and seed sets. Members of different insect groups like ants, bees, butterflies, flies, moths and wasps visit the flowers. Among them, Allorhynchium metallicum and Halictus acrocephalus are the primary pollinators (based on the “relative pollinator service”). The plant species showed a significant pollination deficit (coefficient of pollination deficit [D] = 0.32) in the open condition. Larvae of the florivorous moth Gatesclarkeana erotias significantly reduced reproductive success by eating their floral parts, ovules and immature seeds. In conclusion, combining the pollination deficit and the feeding activity of phytophagous insects (moth larvae) may reduce the reproductive fitness of J. betonica in the study regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号