首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

2.
In situ and light-saturated net photosynthetic rates per unit leaf area were greater in cotton (Gossypium hirsutum L.) plants grown in pots in the field than in similar plants from a phytotron growth chamber. Light-saturated stomatal resistances did not differ in leaves of similar age and exposure on field and chamber plants; lower photosynthetic rates in chamber leaves were associated with greater mesophyll resistance. Differences in net photosynthetic rates were related to differences in leaf thickness. When the photosynthetic rates were expressed per unit of mesophyll volume or per unit chlorophyll differences between field and chamber plants were much less than when rates were expressed per unit leaf area. Characterization of the chloroplast lamellar proteins showed that the field leaves had smaller photosynthetic units than the chamber leaves. Since the field leaves also contained more chlorophyll per unit area, this resulted in a much larger number of photosynthetic units per unit area in the field leaves.  相似文献   

3.
Cell-free extracts of tomato leaves from plants grown on media individually deficient in each of the micronutrient elements showed marked changes in enzymatic constitution. Each deficiency caused an alteration in the over-all enzyme pattern which was characteristic of the micronutrient element in question. The metallo-enzymes such as polyphenol oxidase, ascorbic acid oxidase, and peroxidase lost approximately half their activity in plants deficient in the specific metal concerned. In the cases of all other metal deficiencies, however, polyphenol oxidase and peroxidase were elevated in concentration at least two to six times that of the control. Ascorbic acid oxidase was doubled in zinc- and manganese-deficient material. Glycolic acid dehydrogenase and lactic acid dehydrogenase showed smaller parallel rises averaging a one and a half fold increase in content in zinc- and manganese-deficient plants. Reduced diphosphopyridine nucleotide diaphorase was doubled by copper and manganese deficiencies and was increased to almost one and a half fold by zinc deficiency. Endogenous oxygen uptake in boron-deficient, copper-deficient, and manganese-deficient leaf homogenates was increased, and almost lacking in molybdenum-deficient material.  相似文献   

4.
The role of cytokinins in the differentiation of the photosynthetic apparatus in micropropagated plants and their effect on the plant’s ability to transition from a heterotrophic to an autotrophic condition during acclimatization was investigated. Annona glabra L. shoots were cultured on woody plant medium supplemented with sucrose and different cytokinins to evaluate leaf tissue for chloroplast development, chloroplast numbers, photosynthetic pigmentation, total photosynthetic potential, and soluble sugar content. Plants were transferred to the rooting medium in the presence or absence of sucrose and then acclimatized. Kinetin and benzyladenine (BAP) stimulated chloroplast differentiation. Inclusion of zeatin in the medium induced the formation of greater numbers of chloroplasts in the leaves, while plants cultivated in the presence of only kinetin and BAP demonstrated greater chlorophyll a and carotenoid content. The use of kinetin and BAP during in vitro culture promoted accumulation of dry matter during the acclimatization phase, especially in plants rooted under autotrophic conditions (without sucrose). Kinetin and BAP promoted development of more leaf area and greater plant survival rates in plant acclimatization on both autotrophic and heterotrophic media. The inhibitory effects of thidiazuron on the differentiation of chloroplasts, accumulation of chlorophyll a, and photosynthetic potential were examined.  相似文献   

5.
Bailey S  Horton P  Walters RG 《Planta》2004,218(5):793-802
Plants respond to growth under different environmental conditions by adjusting the composition of the photosynthetic apparatus. To investigate the consequences of the acclimation strategies adopted by Arabidopsis thaliana, we have assessed the functioning of the photosynthetic apparatus in plants with very different chloroplast compositions. Using chlorophyll fluorescence analysis, we have determined the efficiency of, and capacity for, electron transport, assessed the ability to undergo state transitions, and measured non-photochemical quenching over a range of actinic irradiances followed by its resolution into fast- and slow-relaxing components; parallel measurements of leaf carotenoid composition were also carried out. The data clearly show that acclimation serves to maintain the electron transport chain in an oxidised state, ensuring efficient photochemistry. Furthermore, plants grown in high light have a greater capacity for energy-dependent feedback de-excitation, but this is not correlated with xanthophyll cycle pigment levels or de-epoxidation state. Surprisingly, even plants with very low levels of light-harvesting complexes were able to undergo state transitions. We also show that apparent discrepancies between chloroplast composition and photosynthetic function can be attributed to varying degrees of light penetration through the leaf. Thus, leaf chlorophyll content is an important factor influencing acclimation within the leaf.  相似文献   

6.
Anatomical and physiological leaf characteristics and biomass production of Fatsia japonica plants were studied. Plants were grown in a growth chamber at 300 μmol m-2 s-1 (high light) and 50 μmol m-2 s-1 (low light) photosynthetic photon flux density. Plants grown under high light showed a net maximum photosynthetic rate 44% higher than plants grown under low light; the light compensation point and the light saturation point were also higher in high-light plants. Photosynthetic oxygen evolution in isolated chloroplasts was about 40% higher in high-light plants. However, chlorophyll content on a dry weight basis, on a leaf area basis, and per chloroplast was greater in plants grown under low light. Leaf thickness in high-light plants was 13% higher than in low-light plants. The number of chloroplasts was 30% higher in high-light leaves, while chloroplast size was only slightly higher. Chloroplast ultrastructure was also affected by light. Leaf dry weight, leaf area, and biomass production per plant were drastically reduced under low light. Thus, F. japonica is a plant that is able to acclimate to different photosynthetic photon flux density by altering its anatomical and physiological characteristics. However, low-light acclimation of this plant has a considerable limiting effect on biomass production.  相似文献   

7.
采用砂基培养法,运用CI-340便携式光合测定仪、H-7650透射电子显微镜研究了不同锌浓度如0mg/L(锌缺乏)、0.05mg/L(对照)和0.5mg/L(锌过量)处理下不知火杂柑(简称不知火)和槿柑叶片叶绿体色素含量、净光合速率及超微结构的变化。结果表明:(1)锌缺乏处理的不知火及锌过量处理的槛柑叶片叶绿素(a+b)和类胡萝卜素含量、锌缺乏与锌过量处理的两者叶片净光合速率均相对低于对照。(2)锌缺乏处理下,两者叶片叶绿体出现变形或空室化,其中碰柑叶绿体内淀粉粒和质体小球增多,细胞核及线粒体正常,而不知火淀粉粒少,细胞核中出现许多黑色小颗粒物质。锌过量处理下,两者叶片叶绿体出现空室化或叶绿体膜模糊,线粒体解体,其中槿柑叶绿体内质体小球增多,淀粉粒少;而不知火淀粉粒明显增多、增大,基粒片层膨胀、松弛。可见,锌胁迫对两者叶片叶绿体色素、净光合速率及超微结构有着明显的影响,其影响程度因品种而异。  相似文献   

8.
Cooper , Eugene E., and Raymond E. Girton . (Purdue U., Lafayette, Ind.) Physiological effects of manganese deficiency related to age in soybeans (Glycine max). Amer. Jour. Bot. 50(2): 105–110. Illus. 1963.—Soybean plants when grown in manganese-deficient silica sand cultures developed typical manganese deficiency symptoms of interveinal chlorosis and necrosis. Physiological effects including depression of photosynthesis, respiration, growth, and relative chlorophyll contents were studied. The depression of photosynthesis was not always proportional to reduced chlorophyll content. This is taken to indicate the importance of manganese in reactions concerned in photosynthesis in addition to chlorophyll formation. Age of leaves related to position on the plant and actual aging of the plants with time sometimes produced different results when related to photosynthetic rates, which mainly decreased with age of plants. Chlorophyll content in young leaves increased with plant age, except for a consistent decrease after leaf maturity. Respiration rates generally decreased with age. For the most part, the effects of aging on photosynthesis, respiration, and chlorophyll contents were the same for soybeans as for other species reported in the literature.  相似文献   

9.
The expression of the Acidothermus cellulolyticus endoglucanase E1 gene in transgenic tobacco (Nicotiana tabacum) was examined in this study, where E1 coding sequence was transcribed under the control of a leaf specific Rubisco small subunit promoter (tomato RbcS-3C). Targeting the E1 protein to the chloroplast was established using a chloroplast transit peptide of Rubisco small subunit protein (tomato RbcS-2A) and confirmed by immunocytochemistry. The E1 produced in transgenic tobacco plants was found to be biologically active, and to accumulate in leaves at levels of up to 1.35% of total soluble protein. Optimum temperature and pH for E1 enzyme activity in leaf extracts were 81°C and 5.25, respectively. E1 activity remained constant on a gram fresh leaf weight basis, but dramatically increased on a total leaf soluble protein basis as leaves aged, or when leaf discs were dehydrated. E1 protein in old leaves, or after 5h dehydration, was partially degraded although E1 activity remained constant. Transgenic plants exhibited normal growth and developmental characteristics with photosynthetic rates similar to those of untransformed SR1 tobacco plants. Results from these biochemical and physiological analyses suggest that the chloroplast is a suitable cellular compartment for accumulation of the hydrolytic E1 enzyme.  相似文献   

10.
The biochemical lesion that causes impaired chloroplast metabolism (and, hence, photosynthetic capacity) in plants exposed to water deficits is still a subject of controversy. In this study we used tobacco (Nicotiana tabacum L.) transformed with "antisense" ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) DNA sequences to evaluate whether Rubisco or some other enzymic step in the photosynthetic carbon reduction cycle pathway rate limits photosynthesis at low leaf water potential ([psi]w). These transformants, along with the wild-type material, provided a novel model system allowing for an evaluation of photosynthetic response to water stress in near-isogenic plants with widely varying levels of functional Rubisco. It was determined that impaired chloroplast metabolism (rather than decreased leaf conductance to CO2) was the major cause of photosynthetic inhibition as leaf [psi]w declined. Significantly, the extent of photosynthetic inhibition at low [psi]w was identical in wild-type and transformed plants. Decreasing Rubisco activity by 68% did not sensitize photosynthetic capacity to water stress. It was hypothesized that, if water stress effects on Rubisco caused photosynthetic inhibition under stress, an increase in the steady-state level of the substrate for this enzyme, ribulose 1,5-bisphosphate (RuBP), would be associated with stress-induced photosynthetic inhibition. Steady-state levels of RuBP were reduced as leaf [psi]w declined, even in transformed plants with low levels of Rubisco. Based on the similarity in photosynthetic response to water stress in wild-type and transformed plants, the reduction in RuBP as stress developed, and studies that demonstrated that ATP supply did not rate limit photosynthesis under stress, we concluded that stress effects on an enzymic step involved in RuBP regeneration caused impaired chloroplast metabolism and photosynthetic inhibition in plants exposed to water deficits.  相似文献   

11.
Summary The production of hybrid seed is facilitated if one parent possesses a male-sterile cytoplasm. Introduction of the cytoplasm of male-sterile radish (Raphanus sativus L.) into rapeseed (Brassica napus L.) results not only in transfer of the desirable male-sterile trait but induces a chlorophyll defect in the backcrossed male-sterile plants. In this study we show that the defect manifests itself in two different ways in the alloplasmic plants: a) smaller and fewer chloroplasts with an impaired ultrastructure and b) an increase in chlorophyll fluorescence. Defective chloroplasts were characterized by a reduction in both the number and size of grana, the latter due to poor stacking of thylakoids and with frequent discontinuity in the intergranal thylakoid systems. The changed chloroplast morphology and the increase in chlorophyll fluorescence are probably the cause of the lowered photosynthetic efficiency associated with the alloplasmic plants. We propose that the deficiency is the result of incompatibility between the genomes of the radish chloroplast and the rapeseed nucleus. Supporting this hypothesis are studies of male-sterile rapeseed plants in which, by protoplast fusion, the radish chloroplasts were substituted by those of normal male-fertile rapeseed. Such plants showed complete restoration of their photosynthetic potential and displayed both normal chloroplast ultrastructure and normal levels of chlorophyll fluorescence.  相似文献   

12.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO2 dm−2h−1. The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident.  相似文献   

13.
Baryla A  Carrier P  Franck F  Coulomb C  Sahut C  Havaux M 《Planta》2001,212(5-6):696-709
Brassica napus L. (oilseed rape) was grown from seeds on a reconstituted soil contaminated with cadmium (100 mg Cd kg−1 dry soil), resulting in a marked chlorosis of the leaves which was investigated using a combination of biochemical, biophysical and physiological methods. Spectroscopic and chromatographic analyses of the photosynthetic pigments indicated that chlorosis was not due to a direct interaction of Cd with the chlorophyll biosynthesis pathway. In addition, mineral deficiency and oxidative stress were apparently not involved in the pigment loss. Leaf chlorosis was attributable to a marked decrease in the chloroplast density caused by a reduction in the number of chloroplasts per cell and a change in cell size, suggesting that Cd interfered with chloroplast replication and cell division. Relatively little Cd was found in the chloroplasts and the properties of the photosynthetic apparatus (electron transport, protein composition, chlorophyll antenna size, chloroplast ultrastructure) were not affected appreciably in plants grown on Cd-polluted soil. Depth profiling of photosynthetic pigments by phase-resolved photoacoustic spectroscopy revealed that the Cd-induced decrease in pigment content was very pronounced at the leaf surface (stomatal guard cells) compared to the leaf interior (mesophyll). This observation was consistent with light transmission and fluorescence microscopy analyses, which revealed that stomata density in the epidermis was noticeably reduced in Cd-exposed leaves. Concomitantly, the stomatal conductance estimated from gas-exchange measurements was strongly reduced with Cd. When plants were grown in a high-CO2 atmosphere (4,000 μl CO2 l−1), the inhibitory effect of Cd on growth was not cancelled, suggesting that the reduced availability of CO2 at the chloroplast level associated with the low stomatal conductance was not the main component of Cd toxicity in oilseed rape. Received: 14 July 2000 / Accepted: 27 August 2000  相似文献   

14.
Manganese is one of the essential microelements for plant growth, and cerium is a beneficial element for plant growth. However, whether manganese deficiency affects nitrogen metabolism of plants and cerium improves the nitrogen metabolism of plants by exposure to manganese-deficient media are still unclear. The main aim of the study was to determine the effects of manganese deficiency in nitrogen metabolism and the roles of cerium in the improvement of manganese-deficient effects in maize seedlings. Maize seedlings were cultivated in manganese present Meider's nutrient solution. They were subjected to manganese deficiency and to cerium chloride administered in the manganese-present and manganese-deficient media. Maize seedlings grown in the various media were measured for key enzyme activities involved in nitrogen metabolism, such as nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamic-oxaloace transaminase. We found that manganese deficiency restricted uptake and transport of NO(3)(-), inhibited activities of nitrogen-metabolism-related enzymes, such as nitrate reductase, glutamine synthetase, and glutamic-oxaloace transaminase, thus decreasing the synthesis of chlorophyll and soluble protein, and inhibited the growth of maize seedlings. Manganese deficiency promoted the activity of glutamate dehydrogenase and reduced the toxicity of excess ammonia to the plant, while added cerium relieved the damage to nitrogen metabolism caused by manganese deficiency in maize seedlings. However, cerium addition exerted positively to relieve the damage of nitrogen metabolism process in maize seedlings caused by exposure to manganese-deficient media.  相似文献   

15.
Two photosynthetic periods and photosynthetic photon flux densities (PPFD) were used to study the relationship between the rate of photosynthesis and starch accumulation in vegetative soybean leaves (Merr. cv Amsoy 71). Plants grown in short daily photosynthetic periods (7 hours) had higher rates of CO2 fixation per unit leaf dry weight and of leaf starch accumulation than plants grown in long daily photosynthetic periods (14 hours) irrespective of PPFD. CO2 fixation rates per unit leaf area were similar in 7-hour and 14-hour plants grown at low PPFD but were highest in 14-hour plants at the high PPFD. When single leaves of 14-hour plants were given 7-hour photosynthetic periods, their rates of starch accumulation remained unchanged. The programming of starch accumulation rate and possibly of photosynthetic rate by the length of the daily photosynthetic period is apparently a whole-plant, not an individual leaf, phenomenon. Programming of chloroplast starch accumulation rate by length of the daily photosynthetic and/or dark periods was independent of PPFD within the ranges used in this experiment.  相似文献   

16.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

17.
18.
Nitric oxide improves internal iron availability in plants   总被引:18,自引:0,他引:18       下载免费PDF全文
Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 microM Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 microM Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant.  相似文献   

19.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high‐sensitivity, non‐invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image‐based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less‐mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1‐5 phot2‐1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual‐imaging platform also allowed us to develop a straightforward approach to correct non‐photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy‐dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.  相似文献   

20.
Lhcb1–2 from pea was constitutively expressed in transgenic tobacco plants and assessed for functional impact. The successful assembly of the encoded proteins into LHCII trimers was confirmed by electrospray tandem mass spectrometry. Constitutive production of LHCb1–2 led to increased number of thylakoid membranes per chloroplast, increased grana stacking, higher chloroplast numbers per palisade cell and increased photosynthetic capacity at low irradiance, both on a chlorophyll and leaf area basis. The transgenic plants also displayed increased cell volume, larger leaves, higher leaf number per plant at flowering, increased biomass and increased seed weight, when grown under low irradiance levels. Under high irradiance, both transgenic and wild type plants displayed similar photosynthetic rates when tested at 25°C; however, the non-photochemical quenching (NPQ) and qE values increased in the transgenic plants. The exposure of transgenic plants to a photoinhibitory treatment (4°C for 4h, under continuous illumination) resulted in more detrimental impairment of photosynthesis, since recovery was slower than the non-transgenic plants. These data indicate that constitutive expression of additional Lhcb1–2 transgenes led to a series of changes at all levels of the plant (cellular, leaf and whole organism), and a delay in flowering and senescence. The additional production of the pea protein appears to be accommodated by increasing cellular structures such as the number of thylakoids per chloroplast, organelle volume, organelles per cell, and leaf expansion. The presence of the trimeric pea protein in the tobacco LHCII, however, caused a possible change in the organization of the associated super-complex, that in turn limited photosynthesis at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号