首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the developmental morphology of the tropical Asian one-leaf plant Monophyllaea glabra, which is believed to have diverged first in the phylogenetic tree of the genus. The embryo within the seed consists of two cotyledons and a hypocotyl with no shoot or root apical meristems. The endogenous root meristem is formed nearer the hypocotyl end than in other examined Monophyllaea species. One of the cotyledons grows to form the macrocotyledon by means of the basal meristem. The groove meristem arises between the anisocotyledons, shifts toward the macrocotyledon, and is transformed to the inflorescence apex, which produces inflorescence axes in the axils of all ventral bracts of two rows, and secondary inflorescences in the axils of the lower dorsal bracts of the other two rows. The macrocotyledon may act as a ventral bract for the first inflorescence axis at the reproductive stage. This organization suggests that a common ancestor of Monophyllaea and Whytockia with decussate inflorescences diverged in one direction to become Monophyllaea and in another to become Whytockia.  相似文献   

2.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

3.
The prostrate rhizome of Butomus umbellatus produces branch primordia of two sorts, inflorescence primordia and nonprecocious vegetative lateral buds. The inflorescence primordia form precociously by the bifurcation of the apical meristem of the rhizome, whereas the non-precocious vegetative buds are formed away from the apical meristem. The rhizome normally produces a branch in the axial of each foliage leaf. However, it is unclear whether the rhizome is a monopodial or a sympodial structure. Lateral buds are produced on the inflorescence of B. umbellatus either by the bifurcation or trifurcation of apical meristems. The inflorescence consists of monochasial units as well as units of greater complexity, and certain of the flower buds lack subtending bracts. The upright vegetative axis of Limnocharis flava has sympodial growth and produces evicted branch primordia solely by meristematic bifurcation. Only certain leaves of the axis are associated with evicted branch primordia and each such primordium gives rise to an inflorescence. The flowers of L. flava are borne in a cincinnus and, although the inflorescence is simpler than that of Butomus umbellatus, the two inflorescences appear to conform to a fundamental body plan. The ultimate bud on the inflorescence of Limnocharis flava always forms a vegetative shoot, and the inflorescence may also produce supernumerary vegetative buds. Butomus umbellatus and Limnocharis flava exhibit a high degree of mirror image symmetry.  相似文献   

4.
Flowers of Peperomia species are the simplest structurally of any of the members of the Piperaceae. The spicate inflorescences form terminally and in axillary position; in each, the apex first is zonate in configuration with a two-layered tunica while 3-4 leaves are initiated. Later, when the inflorescence apical meristem begins bract initiation, the biseriate tunica persists, but zonal distinctions diminish and the apex can be described in terms of a simple tunicacorpus configuration. The inflorescence apex aborts after producing 30-40 bracts in acropetal succession an abscission layer forms across the base of the apex, and the meristem dries and drops off. Bracts are produced by periclinal divisions in T2 (and occasionally also in the third layer as well); the later-formed floral apices arise by periclinal divisions in T2 and the third layer. Each floral apex is at first a long transverse ridge in the axil, perpendicular to the long axis of the inflorescence. This establishes bilateral symmetry in the flower, which persists throughout subsequent growth. The floral meristem becomes saddle-shaped, and two stamen primordia are delimited, one at either end and lower than the central floral apex. A solitary carpel is initiated abaxially, and soon forms a circular rim which heightens as a tube with an apical pore. Within the open carpel, a solitary ovule is initiated from the entire remains of the floral apical meristem; it, hence, is terminal in the flower, and its placentation is basal. Carpellary closure in P. metallica results from accelerated growth of the abaxial lip, and the two margins become appressed. Species differ greatly as to whether the abaxial or the adaxial lobe predominates in late stages of carpel development. In P. metallica, the receptive portion of the stigma forms from the shorter lobe which is overtopped. Stigmatoid tissue forms internal to the receptive stigma. The prevailing bilateral floral symmetry, absence of a perianth, and the spicate inflorescence are features which distinguish Peperomia (and Piperaceae) from the magnolialian line of angiosperms.  相似文献   

5.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

6.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

7.
A study of the composition of long-branch terminal buds (LBTB) of Pinus banksiana Lamb. and the yearly periodicity associated with their formation, development, and elongation was undertaken. Each LBTB has lateral bud zones and zones of cataphylls lacking axillary buds. When present, staminate cone primordia differentiate from the lowest lateral buds in the lowest lateral bud zone of the LBTB. Ovulate cone primordia and lateral long-branch buds can differentiate from the upper lateral buds in any lateral bud zone. When both types of buds are present, lateral long-branch buds are uppermost. Dwarf-branch buds occur in all lateral bud zones. During spring LBTB internodes elongate, new cataphylls are initiated, dwarf branches elongate, needles form and elongate, pollen forms and is released, and ovulate cones are pollinated. During summer buds form in the axils of the newly formed cataphylls. By early fall the new LBTB are in overwintering condition and the four types of lateral buds are discernable. The cytohistological zonation of the LBTB shoot apex is similar to that of more than 20 other conifer species. Cells in shoot apices of pine are usually arranged in distinct zones: apical initials, subapical initials, central meristem, and peripheral meristem. Periclinal divisions occur in the surface cells of the apex; therefore no tunica is present. At any given time, shoot apex volume and shape vary among LBTB in various positions on a tree. In any one LBTB on a tree, shoot apex shape changes from a low dome during spring to a high dome during summer to an intermediate shape through fall and winter.  相似文献   

8.
Shoot apices of Saraca indica produce adult leaves that have 4 to 6 pairs of leaflets, whereas those of S. bijuga usually have only 2 pairs. In both species one leaflet pair is found during the juvenile phase. Juvenility lasts many plastochrons in S. bijuga but is restricted to a few in S. indica. The shoot apical meristems of these two taxa are similar in structure, cell number, and cell size; however, the shoot apex of Saraca bijuga is slightly more stratified, having 2–3 tunica layers as opposed to 1–2 in S. indica. For most of the plastochron the apical meristem in both species is situated laterally at the base of the most recently formed leaf. A newly forming primordium and its internode shift the apical meristem upward unilaterally; the meristem passes through a brief apical dome stage and becomes positioned 180° from its origin at the beginning of the plastochron. Hence, there is a true pendulum meristem in both species. In S. bijuga the maximum length of the youngest leaf primordium, just prior to the formation of its successor, is twice that of S. indica. The internodes immediately below the shoot apex and the axillary buds develop more rapidly in S. bijuga than in S. indica. It is suggested that the bijugate leaf of S. bijuga represents a case of neoteny in plants.  相似文献   

9.
Most apical resting buds of Choisya tenata include inflorescence buds in the axils of their lower consecutive paired scales. These inflorescences develop as apical buds which burst in spring. The whole of the lateral inflorescence system on a shoot originating from an apical bud may be viewed as a single, proliferous inflorescence. After the spring flush there are usually two other flushes of the same shoot within the same season, each of which may be accompanied by the development of lateral inflorescences as in the spring flush. Each further flush produces an apical 'lammas shoot'. As an apical lammas shoot elongates, lateral lammas shoots may also develop from upper, previously resting, axillary buds on the underlying stem segment of the preceding flush. Lateral inflorescences on apical lammas shoots arise from axillary buds preformed within the briefly-dormant apical buds terminating the preceding flush. These inflorescences, as well as the spring ones, represent proleptic shoots. The production of resting apical buds between two intra-season flushes of a shoot may be fugacous, without the differentiation of perfect bud-scales, and with curtailmenl ol internode elongation. As no environmental influence seems to be responsible for intra-season rhythmicity in development, this is said to be endorhythmic. The interrelations of proleptic to sylleptic shoots are discussed.  相似文献   

10.
In both Chamaedorea seifrizii Burret and C. cataractarum Martius each adult foliage leaf subtends one axillary bud. The proximal buds in C. seifrizii are always vegetative, producing branches (= new shoots or suckers); and the distal buds on a shoot are always reproductive, producing inflorescences. The prophyll and first few scale leaves of a vegetative branch lack buds. Transitional leaves subtend vegetative buds and adult leaves subtend reproductive buds. Both types of buds are first initiated in the axil of the second or third leaf primordia from the apex, P2 or P3. Later development of both types of bud tends to be more on the adaxial surface of the subtending leaf base than on the shoot axis. Axillary buds of C. cataractarum are similarly initiated in the axil of P2 or P3 and also have an insertion that is more foliar than cauline. However, all buds develop as inflorescences. Vegetative branches arise irregularly by a division of the apex within an enclosing leaf (= P1). A typical inflorescence bud is initiated in the axil of the enclosing leaf when it is in the position of P2 and when each new branch has initiated its own P1. No scale leaves are produced by either branch and the morphological relationship among branches and the enclosing leaf varies. Often the branches are unequal and the enclosing leaf is fasciated. The vegetative branching in C. cataractarum is considered to be developmentally a true dichotomy and is compared with other examples of dichotomous (= terminal) branching in the Angiospermae.  相似文献   

11.
Vegetative seedlings of the Ceres strain Brassica campestris L., a quantitative, long-day plant, were induced to flower by exposure to a 16-hr, long-day cycle. Cytohistological and cytohistochemical changes associated with inflorescence development were examined. Developing shoot apices were classified in vegetative, transitional, and reproductive stages. The vegetative apex possessed a biseriate tunica, central zone, peripheral zone and pith-rib meristem. The transitional stage at 48 hr was marked by an increase in size and by a stratification of the upper cell layers of the shoot apex with a concurrent decrease of apical cytohistochemical zonation. The reproductive stage was initiated at 58 hr by periclinal cell divisions in the 3rd and 4th cell layers of the flank region. Cytohistochemical zonation in the vegetative apical meristem was restored in the floral apex. An “intermediate developmental” phase was not observed between the vegetative and reproductive stage.  相似文献   

12.
The influence of the shoot apex upon leaf and bud formationin the fern Dryopteris aristata has been investigated by furtherexperiments on puncturing the apical cell. When the apical cellgroup is damaged, leaf primordia, which may be orientated abnormally,continue to be formed on the meristem, but one or more budsmay also arise. The observations reported here indicate thata zone at the periphery of the apical meristem is particularlyreactive when the apical cell group is damaged, the majorityof buds being induced in this region. The extent of damage tothe apex may affect the sequence of organogenesis: when damageis extensive buds tend to be formed immediately, subsequentprimordia developing as leaves; when the damage is confinedto the apical cell, or extends to only a few of its segments,bud formation tends to be delayed. It is concluded that the effect of the apical cell on organformation is exercised through the growth and organization ofthe apex as a whole.  相似文献   

13.
Investigation of the development and organography of the shoot systems of Microgramma vacciniifolia and M. squamulosa was undertaken for the purpose of determining: (1) the features of shoot growth that are responsible for the distinctive vining character of these epiphytic ferns; and (2) the mode of origin of branches and their contrast with leaf initiation. Shoots of both species are dorsiventral and plagiotropic (i.e., parallel to the substrate) in habit. Since the shoot apical meristem is radial in transectional symmetry, shoot dorsiventrality in Microgramma is a postgenital or secondary developmental event, and its inception is related to the initiation of lateral appendages. Leaves and buds arise in a distichous phyllotaxis and occupy opposite and alternating positions on the dorsal surfaces and flanks of the rhizome. Endogenous roots are initiated in two rows from the ventral surface of the stem, in the vicinity of the rhizome meristem; however, they do not emerge from the rhizome until some distance behind the tip and do not elongate until the region of substrate contact. We conclude that the vining nature of this fern rhizome is a result of precocious internodal elongation and the concomitant delay of leaf and bud expansion in the region of stem elongation. In addition, observation of branch origin confirms previous suggestions that branching in Microgramma is strictly lateral and extra-axillary and not a dichotomous derivative as proposed by some workers. Leaf and bud primordia differ not only in the nature of their respective vascular supplies but also in their actual course of initiation. In the case of the leaf, the primordium is precociously emergent and exhibits a lenticular apical cell at its summit when it is only one plastochron removed from the flanks of the apical meristem. By contrast, initials of the bud primordium divide less actively and remain in a sunken position for at least 5–6 plastochrons; only when the bud apex becomes expanded and emergent does a tetrahedral apical cell become recognizable at the tip of the bud promeristem. Because of the distinctive pattern of branch and leaf origin, as well as the lack of adventitious and phyllogenous origin of branch primordia, we suggest that the shoot of Microgramma is a useful test organism for the re-examination of the problem of leaf and bud determination in the ferns.  相似文献   

14.
'Sideshootless,’ a mutant strain of tomato which does not produce axillary buds during vegetative growth, was compared with normally branching plants in order to study the nature of development particularly with regard to axillary buds. Sectioned material revealed no indication of axillary bud initiation in the sideshootless plant at any time during the vegetative phase of growth. In the normal plants, buds were noted to arise in the axil of the fifth youngest leaf. The buds take their origin in tissue which is in direct continuity with the apical meristem. The bud primordia later become set apart from the apex as vacuolation takes place in the surrounding tissue. At the time of floral initiation, the mutant and normal strains behave similarly. Axillary buds appear in the axils of the 2 leaves immediately below the floral apex. One of the buds elongates to overtop the existing plant axis; the other develops as a typical sidebranch. The inflorescence is pushed aside in the process. This pattern is repeated with each inflorescence; thus an axis composed of several superimposed laterals results.  相似文献   

15.
We studied the effects of cadmium acetate at various concentrations (200 to 800 mg/kg substrate) on growth and development of shoot apical meristem of the barley plants (Hordeum vulgare L.) under the conditions of vegetative experiment. It was shown that in the presence of increasing cadmium concentrations in the soil substrate, the apex length and number of inflorescence elements decreased and the rate of organogenesis slowed down, thus affecting the spike potential productivity and morphological parameters of barley plants at the flowering stage. It is possible that the negative effect of cadmium on the shoot apical meristem is associated with its influence on division of the apex cells.  相似文献   

16.
Thirty-five species belonging to various dicotyledonous families were investigated to study the origin, development, and probable function of the shell zone, which is defined as an arcuate zone of cambiform cells delimiting the early axillary bud meristem. It is present in the majority of the investigated plants and five intergrading patterns of origin are described: (i) from the parenchymatized derivatives of the cells of the peripheral meristem of the shoot apex, adaxial to the bud meristem, (ii) from the peripheral meristem of the shoot apex along with the initiation of the early bud meristem, (iii) from the adaxial cells of the bud meristem, (iv) from the derivatives of the cells of the bud meristem at its base, and (v) partly from the parenchymatized cells of the peripheral meristem adaxial to the bud and partly from the adaxial derivatives of the bud meristem. The shell zone loses its identity at different stages of bud development in various species. Its cells ultimately contribute to the ground meristem, procambium, and pith cells of the axis. In Cuminum cyminum and lpomoea cairica the shell zone contributes in bringing about the axillary position of the bud from its early lateral position. In Solarium melongena, derivatives of the shell zone initiate the internodal elongation between the flower or inflorescence and the shoot apex, ultimately shifting the bud to an extra-axillary position on the internode.  相似文献   

17.
18.
The embryo of the reduced form of the lanceolate mutant in tomato fails to undergo the heart-shaped stage of development. Cells in the shoot apical region of this leafless mutant lose their meristematic character and develop into mature parenchyma during embryogenesis. This early loss of meristem tissue leads to the determinate growth which is evident in the seedling. In contrast to normal, starch grains are visible with the light microscope in cells of the shoot tip of the mutant hypocotyl from early embryogeny up to and including the seedling stage, and protein bodies are abundant in the same tissue of fully developed mutant embryos. The shoot apical region in homozygous mutant embryos with cotyledons or cotyledon-like structures exhibits some cytochemical and morphological similarity with the normal shoot apex. Morphological variation in these forms appears to be in a continuous pattern. The extent of their development and consequent longevity is related to possible differences in rates of cell expansion and variation in environmental factors during the early stages of embryogenesis.  相似文献   

19.
Tassel and ear primordia were collected from greenhouse-grown specimens of the Mexican maize landrace Chapalote and prepared for scanning electron microscopic (SEM) examination. Measurements of inflorescence apices and spikelet pair primordia (spp) were made from SEM micrographs. Correlation of inflorescence apex diameter with number of spikelet ranks showed no significant difference between tassels and ears, except at the two-rank level where the ear apical meristem had a significantly smaller diameter than corresponding two-ranked tassels. Within individual inflorescences, spp in different ranks enlarged at comparable rates, although the rates from one ear to the next along the stem differed. In both tassels and ears, spp divide to form paired sessile and pedicellate spikelet primordia when the spp is 150 μm wide; ear axes are significantly thicker than tassel axes at the time of bifurcation. The similarities in growth between ear and tassel primordia lend further support to the hypothesis that both the maize tassel and ear are derived from a common inflorescence pattern, a pattern shared with teosinte. Inflorescence primordial growth also suggests that a key character difference between teosinte and maize, distichous vs. polystichous arrangement of spikelets, may be related to size of the apical dome and/or rate of primordium production by the apical meristem. There appears to be more than a single morphological event in the shift from vegetative to reproductive growth. The evocation of axillary buds (ears) is independent of, and temporally separated from, the transition to flowering at the primary shoot apex (tassel).  相似文献   

20.
 Developmental morphology is described of the one-leaf plant Monophyllaea singularis which possesses a huge macrocotyledon, a long petiolode below it, and many small inflorescences scattered along the petiolode and midrib. Cell proliferation and basipetal differentiation occur in both cotyledons after water imbibition and germination. The basal meristem forms from a group of small, least differentiated cells at the base of a future macrocotyledon and continues blade production even at the reproductive stage. The petiolode meristem, which forms as an intercalary meristem near the base of the macrocotyledon, contributes to the elongation of the petiolode and the midrib. Although the 'groove meristem', like the groove meristem of Streptocarpus, forms between the cotyledons at the site of a shoot apical meristem, it is not involved in inflorescence production. In M. singularis, instead of the 'groove meristem', the inflorescences are initiated adventitiously from groups of cells in the dermal and subdermal layers of the petiolode and probably also of the midrib. Received October 10, 2000 Accepted August 2, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号