首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sung ZR 《Plant physiology》1981,68(1):261-264
Cultured carrot cells grow as unorganized callus tissue in medium containing auxin. Upon removal of the auxin from the medium, they grow in an organized manner and differentiate into embryos. In the normal cell line, W001C, the callus growth can be inhibited by cycloheximide, but the embryonic growth cannot. A variant cell line, WCH105, whose callus growth is resistant to cycloheximide, was isolated. The mechanism of cycloheximide resistance in embryos of both lines and in WCH105 callus was found to be cycloheximide inactivation. In addition to auxin, bromodeoxyuridine can also promote callus growth in carrot culture. Callus cultures maintained by bromodeoxyuridine behave the same as do those maintained by auxin. WCH105 callus is resistant, whereas W001C callus is sensitive to cycloheximide inhibition. Except for the onset of embryogenesis, cycloheximide inactivation is expressed throughout the embryo developmental stages up to the plantlets. These results suggest that cycloheximide inactivation is a function expressed in the differentiated, but not in the undifferentiated, tissues.  相似文献   

2.
《Plant science》1988,55(3):267-279
Somatic embryogenesis occurs spontaneously in some monocotyledoneous callus and cell suspension cultures maintained in suitable culture conditions. Nevertherless, the processes involved in somatic embryo development, and factors inducing this differentiation, are poorly understood. In order to study the changes in protein composition accompanying embryogenesis in cell suspension cultures of Dactylis glomerata L., embryos of various sizes and “undifferentiated” callus cells were separated and their total cellular protein extracts analyzed by two-dimensional polyacrylamide gel electrophoresis. Several proteins could be identified that are specific for embryos or callus under various culture conditions. Three independent detection methods were employed: silver-staining of proteins, in vivo labeling of proteins with [35S]methionine, and in vitro translation of poly(A)+ RNA. All culture conditions tested, including those that induce embryonic proteins in carrot, fail to induce embryonic proteins in D. glomerata callus cells.  相似文献   

3.
Somatic embryos were initiated with mature seeds of neem (Azadirachta indica A. Juss.) when cultured on Murashige and Skoog's medium supplemented with thidiazuron (TDZ). Regeneration occurred via somatic embryogenesis: direct embryo formation and through an intermediary callus phase. TDZ was very effective and induced somatic embryogenesis across a wide range of concentrations (1–50 μm). However, somatic embryogenesis was accompanied by callus formation at concentrations of 20 μm and above. Cell suspension cultures were established with the TDZ-induced callus and groups of large cell clumps were formed within 2–3 weeks. Plants were regenerated from both directly formed somatic embryos and somatic embryos derived from cell suspensions plated on semisolid medium devoid of growth regulators. Regenerated plantlets continued to grow after transfer to a greenhouse environment and were similar phenotypically to zygotic seedlings. This simple regeneration system may be beneficial for mass propagation of selected elite clones of neem. Received: 13 May 1997 / Revision received: 13 November 1997 / Accepted: 2 December 1997  相似文献   

4.
Extracellular compounds isolated from embryogenic carrot cell suspension cultures increase, by 1.5 to 6-fold, end-stage embryo production when added back to carrot cultures initiating embryogenesis. The causative factors related to the enhancement of embryo production are most likely to be extracellular, high molecular weight proteins found in the embryo-free medium (EFM) after somatic embryos have been formed. The addition of heat-treated EFM to fresh cultures did not result in enhancing effects on the production of end-stage embryos. However, the addition of compounds precipitated from EFM, by high concentrations of salt, accelerated by four days the formation of comparable amounts of end-stage embryos and surpassed total end-stage embryo levels by a factor of 4-6, dependent on the precipitate dose. These results suggest that heat-labile polypeptide molecules may be responsible for growth factor-like effects during somatic embryogenesis.  相似文献   

5.
The effects of various exogenous auxins and polar auxin transport inhibitors on somatic embryogenesis in carrot cultures were investigated. Indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid do not disrupt the sequence or the polarity of individual stages in embryo development, but tend to cause developing embryos to revert to undifferentiated callus, with increasing frequency in later embryo stages. The transport inhibitors, N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid, block morphological transitions to the subsequent stage; for example, they cause the formation of enlarged globular and oblong embryos. Heart embryos in these treatments usually develop additional lateral growth axes. These results shed light on the role of auxin and its polar transport in somatic embryogenesis.  相似文献   

6.
Axillary buds (2 mm) from 3-year-old Carica pubescens Lenné et Koch (highland papaya) fruit-bearing plants grown in the greenhouse were cultivated in NN-medium supplemented with different growth regulators naphthaleneacetic acid and indoleacetic acid in combination with Zeatin, benzyladenine, Kinetin and thidiazuron. Several responses were observed within 2–3 months; namely, sprouting of the preformed axillary buds, bud branching into multiple shoots, callus formation at the basal end of the explant and somatic embryogenesis in the preformed callus. Somatic embryogenesis was frequent in most of the tested growth regulator combinations, with the exception of thidiazuron which showed no effect. A much higher yield of somatic embryos could be obtained in suspensions. Somatic embryogenesis was enhanced by the occurence of adventive embryogenesis on single embryos as globular embryo clusters. This was observed in cell suspensions initially grown in a WPM-medium with 2,4-dichlorophenoxyacetic acid, or in combination with benzyladenine or zeatin, for 6 days, then maintained in a growth regulator-free medium under continuous agitation (50 RPM) on an orbital shaker for 3 months. Single cells grown in the absence of 2,4-dichlorophenoxyacetic acid did not initiate embryogenesis and de-differentiated into callus. Plantlets were recovered after transfer of mature embryos from cell suspensions into Magenta flasks. In a second subculture, adventitious embryogenesis occurred spontaneously in clusters at the globular embryo stage under the same growth conditions, yielding a high number of embryos. The culture conditions described above allowed initiation of a large number of somatic embryos directly from cell suspensions through adventive somatic embryogenesis and indirectly from callus on axillary buds.Abbreviations 2,4-d dichlorophenoxyacetic acid - CH casein enzymatic hydrolysate - BA benzyladenine - FAA formalin:acetic acid:alcohol - Glu l-glutamine - IAA indoleacetic acid - NAA naphthaleneacetic acid - NN Nitsch and Nitsch-medium (1969) - TDZ thidiazuron - SD standard deviation  相似文献   

7.
By means of co-culture in growth regulator-free medium we analysed whether factors secreted into the medium of Daucus carota (carrot) somatic embryo cultures would be able to overcome the developmental arrest of globular Arabidopsis thaliana somatic embryos. Instead of Arabidopsis embryogenesis being promoted the development of carrot somatic embryos was inhibited at the globular stage in the presence of Arabidopsis suspension culture aggregates with attached globular embryos. Several experiments showed that this was due to the release of previously accumulated 2,4-D by the Arabidopsis cultures. (1) In addition to arresting carrot embryogenesis, co-culture with Arabidopsis cell suspensions also induced callus formation on Arabidopsis root segments. (2) Both effects only occurred with Arabidopsis suspensions grown in the presence of 2,4-D and not with those grown in the presence of NAA, demonstrating that Arabidopsis is not segregating a “general” inhibiting factor. (3) Both effects could be prevented by either binding 2,4-D to active charcoal or by washing it away by changing the medium daily. (4) Uptake of 2,4-D into Arabidopsis cells during culture in 2,4-D containing medium and subsequent release of 2,4-D after transfer to growth regulator-free medium was measured. (5) These low levels of released 2,4-D (0.2– 0.5 μm) could mimic the observed effects. Taken together these data suggest that the high intracellular 2,4-D content of Arabidopsis cultures may interfere with Arabidopsis somatic embryo development beyond the globular stage. Received: 13 November 1997 / Revision received: 2 February 1998 / Accepted: 16 November 1998  相似文献   

8.
Summary The effects of callus inoculation concentration and culture duration on somatic embryogenesis of orchardgrass,Dactylis glomerata L., were evaluated in suspension cultures of an embryogenic genotype Embryogen-P. Somatic embryo formation was induced in liquid SH medium containing 30 μM dicamba (SH-30 and 1.5% casein hydrolysate; embryo development was in liquid SH medium without plant growth regulators (SH-0); and embryo maturation and germination occurred on solid SH-0 medium. Callus proliferation in SH-30 suspension cultures was greatest when callus was inoculated into the liquid medium at a relatively high concentration of 4% (4 g callus/100 ml medium), but the induction of somatic embryos was highest in this medium if the callus was inoculated at a lower concentration (<2%). In a second experiment, somatic embryo yield was highest when SH-0 development medium was inoculated with suspension culture callus at 0.1% concentration and declined markedly as inoculation concentration increased. Cell concentration is a critical factor in regulating the somatic embryogenesis response in orchardgrass suspension cultures.  相似文献   

9.
Carrot cell cultures were used to study the dynamics of calmodulin protein levels, calmodulin methylation, and calmodulin-binding proteins during plant growth and development. Comparisons of proliferating and nonproliferating wild carrot cells show that, while calmodulin protein levels does not vary significantly, substantial variation in post-translational methylation of calmodulin on lysine-115 is observed. Calmodulin methylation is low during the lag and early exponential stages, but increases substantially as exponential growth proceeds and becomes maximal in the postexponential phase. Unmethylated calmodulin quickly reappears within 12 h of reinoculation of cells into fresh media, suggesting that the process is regulated according to the cell growth state. Calmodulin and calmodulin-binding proteins were also analyzed during the formation and germination of domestic carrot embryos in culture. Neither calmodulin methylation nor calmodulin protein levels varied significantly during somatic embryogenesis. However, upon germination of embryos, the level of calmodulin protein doubled. By calmodulin overlay analysis, we have detected a major 54,000 M(r) calmodulin-binding protein that also increased during embryo germination. This protein was purified from carrot embryo extracts by calmodulin-Sepharose chromatography. Overall, the data suggest that calmodulin methylation is regulated depending upon the state of cell growth and that calmodulin and its target proteins are modulated during early plant development.  相似文献   

10.
Somatic embryogenesis from pea embryos and shoot apices   总被引:3,自引:0,他引:3  
Conditions were defined for plant regeneration via somatic embryogenesis in pea, using explants from immature zygotic embryos or from shoot apices. For the induction of somatic embryos, an auxin (picloram or 2,4-dichlorophenoxyacetic acid) was required. Embryogenic callus originated from embryonic axis tissue of immature embryos and from the axillary-bud region and the plumula of shoot apices. A clear effect of embryo size on somatic embryogenesis was shown. There were differences in frequency of somatic embryogenesis among the five genotypes used in the study. Additions of BA to auxin-containing medium reduced embryo production. Histological examinations confirmed the embryogenic nature of the immature embryo cultures and revealed that somatic embryos originated from the meristematic areas near the callus surface.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

11.
An improved, rapid, reproducible, and simple protocol has been developed for somatic embryogenesis in banana cv. ‘Grand Naine’ using explants derived from actively growing multiple shoot cultures. Many restrictive factors remain in banana embryogenesis such as long duration, unpredictability, and a high degree of genotype dependence. In the present study, we used split shoot tips from 4-wk-old cultures as explants. Somatic embryos were induced in 15 d directly in Murashige and Skoog (MS) medium supplemented with different combinations of 0–8.28 μM picloram and 0.22–4.44 μM 6-benzylaminopurine (BA) without callus formation. Maximum embryo induction (100%) occurred when 4.14 μM picloram and 0.22 μM BA were used. Conversion of somatic embryos into plantlets occurred sporadically (2–3%) in MS medium containing α-naphthalene acetic acid (NAA; 0.53–2.68 μM) together with BA (2.22–44.39 μM), or thidiazuron (4.54 μM) plus glutamine (200 mg/L). This protocol is far superior to those already reported for fast and high frequency induction of somatic embryo. In liquid agitated culture, individual embryos separated easily and produced a large number of secondary embryos within 10 d which, upon transfer to filter paper overlaid on MS liquid medium supplemented with 4.44 μM BA, resulted in conversion (3%) into plantlets.  相似文献   

12.
Somatic embryogenesis in callus cultures of Commiphora wightii (Arnott.) Bhandari was achieved. Though the frequency of explants producing embryonic culture was low, immature zygotic embryos were the only suitable explants to produce embryonic callus after reciprocal transfers on media containing 2,4,5-trichlorophenoxy acetic acid (0.1 mgl(-1)) and kinetin (0.1 mgl(-1)) or devoid of growth regulators. All other media failed to produce embryonic callus. Embryonic cells were small, densely filled with cytoplasm and isodiametric as compared to non-embryonic cells, which were large, elongated and vacuolated. Maximum growth of embryonic callus was recorded on modified MS medium (MS-2 medium) supplemented with BA (0.25 mgl(-1)) and IBA (0.1 mgl(-1)). MS-2 salts supported higher growth of callus as compared to tissues grown on B5 medium containing same concentrations of plant growth regulators. Exogenous medium nutrients had no effect on somatic embryo development whereas plant growth regulators had little effect. Asynchronously growing embryos formed plantlets regularly which were successfully transferred to the field conditions.  相似文献   

13.
A method for secondary somatic embryogenesis was developed on embryos derived from embryogenic callus formed on Hepatica nobilis seedlings. Somatic embryogenesis (SE) was induced on seedlings (on the hypocotyl and epicotyl parts) grown on the Murashige and Skoog (1962) medium (MS) supplemented with 1 µM naphthaleneacetic acid (NAA), and/or 0.1 µM 6-benzyladenine (BA) and on medium without plant growth regulators (PGR). The best response of embryogenic callus formation was observed on the medium containing 1 µM NAA alone or with 0.1 µM BA. Individual somatic embryos, formed on embryogenic callus on the medium without PGR (MS0), at heart, torpedo and cotyledonary stage, were transferred to the media where secondary somatic embryo formation and development into plantlets occurred. Although the most efficient repetitive cycles of secondary SE were recorded for all stages of somatic embryos (heart, torpedo, cotyledonary) on the MS0 medium (77.8–87.4 %), secondary somatic embryos were also obtained on all media supplemented with cytokinins. The best rate of somatic embryos germination was achieved on MS media with 0.2 µM NAA and 2 µM BA, and 0.1 µM NAA and 1 µM BA (48.8–52.0 %) when more mature embryos (cotyledonary stage) were used. Plantlets grown from somatic embryos were successfully acclimatized to greenhouse conditions.  相似文献   

14.
Corn starch as an alternative gelling agent for plant tissue culture   总被引:1,自引:0,他引:1  
Growth and differentiation of plant cell cultures was increased when media were gelled with corn starch instead of agar. Dry weight of tobacco and wild carrot cell cultures on media gelled with starch was more than three times that of cultures on media gelled with agar. Higher yield of anthocyanin and dry weight of embryos were found in wild carrot cultures grown on media gelled with corn starch. The starch-mediated increase in growth and differentiation of wild carrot cells was accompanied by an increase in density of the cultures shown by higher dry weight/fresh weight ratios.  相似文献   

15.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

16.
Summary Immature embryos of 41 lines of barley were screened in vitro for callus induction and somatic embryogenesis on different media to establish totipotent cultures. The use of modified MS and CC media, both supplemented with 1 g/l casein hydrolysate, and the substitution of agarose for agar resulted in the highest frequencies of somatic embryo induction. Embryogenic callus was induced and plants regenerated from 23 of the lines tested. The auxins 2,4-D, dicamba, picloram and 2,4,5-T were suitable for embryogenic callus induction. High frequencies of somatic embryo germination occurred on CC medium supplemented with 1 mg/l IAA and 0.05 mg/l zeatin. A strong genotypic effect on the capacity and frequency of embryogenic callus formation was found. Cultivar Golden Promise always gave the best results. Experiments with field grown material in 3 consecutive years showed that environmental factors also strongly influenced the induction of somatic embryogenesis and plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid - picloram 4-amino-3,6,6-trichloropicolinic acid - NAA naphtaleneacetic acid - IAA indole-3-acetic acid - ABA abscisic acid - BAP 6-benzyl amino purine - 2iP 6-(3-methyl-2 butenyl 1-amino)purine - GA3 gibberellic acid  相似文献   

17.
L Wang  X G Duan  S Hao 《实验生物学报》1999,32(2):175-183
Somatic embryogenesis can be induced in tissue cultures of Freesia refracta either directly from the epidermal cells of explant, or indirectly via intervening callus. In direct pathway, somatic embryos were in contact with maternal tissue in a suspensor-like structure. In indirect pathway, the explants first proliferacted to give rise to calluses before embryoids were induced. The two sorts of calluses were defined to embryogenic callus and non-embryogenic callus according to producing of somatic embryos. An indirect somatic embryo is developed from a pre-embryogenically determined cell. This kind of somatic embryo has no suspensor structure instead of a complex with maternal tissue. Somatic embryos have their own vascular tissues, and can develop new plantlets independently.  相似文献   

18.
香雪兰的体细胞胚胎发生可通过两种途径进行,即直接发生与间接发生。在直接发生方式中,体细胞胚直接来源于尚未完全分化的外植体表皮细胞;体细胞胚与母体组织以一种类似胚柄的结构相联系。间接发生方式中,体细胞胚的形成要经过一个愈伤组织阶段。以是否能形成体细胞胚分类,可将愈伤组织分为胚性和非胚性愈伤组织。以间接方式形成的体细胞胚是由胚性愈伤组织中的一种决定细胞发育来的。这种体细胞胚不具有类似胚柄的结构,而与母体组织共同形成一个复合体。体细胞胚具有自己独立的维管束系统,在脱离母体组织后能够独立发育成株。  相似文献   

19.
Z. R. Sung  R. Smith  J. Horowitz 《Planta》1979,147(3):236-240
The frequency of embryo formation was determined in normal and 5-methyltryptophan-resistant (5-MTr) cell lines of wild carrot (Daucus carota L.) grown in the presence or absence of 2-isopentenyladenine (2-ip) and 2,4-dichlorophenoxyacetic acid (2,4-D). 2-ip stimulated the intitation of embryo formation and also accelerated embryo development. 2.4-D inhibited embryo differentiation at several stages: at 0.1 mg/l, it stopped regeneration at the earliest stage, resulting in callus growth instead of embryo formation; at 0.04 mg/l 2,4-D, some globular embryos were produced, but they did not develop into more advanced embryos. Variant cell lines with higher levels of auxin (indole-3-acetic acid, IAA) were used to study the effect of an elevated endogenous concentration of auxin on embryogenesis. IAA at these concentrations suppressed regeneration in the same manner as the exogenous auxin, 2,4-D, did. This result confirms the hypothesis that high levels of IAA are responsible for the suppression of regeneration in the 5-MTr cell lines.  相似文献   

20.
Somatic embryogenesis in soybean via somatic embryo cycling   总被引:4,自引:0,他引:4  
Summary The objectives of the present research were: a) to develop an efficient soybean embryogenic regeneration system characterized by a high frequency of explant response and a large number of somatic embryos per explant; b) to evaluate the factors affecting somatic embryogenesis via somatic embryo cycling; and c) to identify the origin of somatic embryos in the system. A highly improved and efficient system for soybean somatic embryogenesis was established using somatic embryo cotyledons and somatic embryo hypocotyl/radicle explants plated on α-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented MS basal media. The system included somatic embryo cycling between liquid and solid medium and it consistently gave rise to a much higher frequency of explant response and a larger number of embryos per responding explant than those obtained from zygotic cotyledon explant tissues. Genotype, differences were observed for response in some of the treatments with cv “Fayette” being more responsive than “J103”. Histological studies revealed that somatic embryos induced in the somatic embryo cycling system originated almost exclusively from epidermal cells on both 2,4-D and NAA inductive media. The cells of the epidermis proliferated to produce somatic embryos directly without an intervening callus phase. A single-cell origin of somatic embryos was observed in cultures on a 40 mg/liter 2,4-D treatment. A large number of responding cells in the epidermis was also observed in the 10 mg/liter NAA treatment. The single-cell origin of somatic embryos from epidermal layers of the explant tissues should facilitate development of an efficient transformation system for soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号