首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A “double-blepharoplast” originates de novo in the spermatogenous cell of Ginkgo biloba L. Initially, the double-blepharoplast consists of two opposing hemispherical bodies comprised of densely staining material. The two blepharoplasts seemingly are pushed apart by the formation of densely packed fibrils which are oriented perpendicular to the distal, rounded edges of the two future blepharoplasts. As the latter move apart, each one develops lightly staining channels which are often organized in a hub and spoke configuration (procentrioles). Microtubules extend from the blepharoplasts as the latter move to their final position in the cell, and centrioles (probasal bodies) become organized at the periphery of each blepharoplast. Two large “osmiophilic globules,” conspicuous entities close to the nucleus of the mature spermatogenous cell, arise de novo. A fibrillogranular body in the cytoplasm, always closely associated with the nucleus, also arises de novo.  相似文献   

2.
Vaughn KC  Bowling AJ 《Protoplasma》2008,233(3-4):231-240
Most land plants have ill-defined microtubule-organizing centers (MTOCs), consisting of sites on the nuclear envelope or even along microtubules (MTs). In contrast, the spermatogenous cells of the pteridophyte Ceratopteris richardii have a well-defined MTOC, the blepharoplast, which organizes MTs through the last two division cycles. This allows a rare opportunity to study the organization and workings of a structurally well-defined plant MTOC. In this study, antheridial plants were treated with levels of oryzalin that cause complete MT loss from the cells containing blepharoplasts. The oryzalin was then washed out and plants were allowed to recover for varying amounts of time. If the spermatogenous cells were fixed prior to washing out, the blepharoplasts had an unusual appearance. In the matrix (pericentriolar) material where MT ends are normally found, clear areas of about the diameter of MTs were seen embedded in a much deeper matrix, made more obvious in stereo pairs. Occasionally, the matrix material was highly distended, although the basal body template cylinder morphology appeared to be unaltered. The blepharoplasts often occurred as clusters of 2 or 4, indicating that blepharoplast reproduction is not affected by the lack of MTs, but that their movement to the poles is. Gamma (gamma) tubulin antibodies labeled the edge of the blepharoplast in areas where the pits are located, indicating that these might be sites for MT nucleation. After wash out, the new MTs always re-appeared on the blepharoplast and the recovery occurred within an hour of washout. MT lengths increased with increasing washout time and were indistinguishable from untreated blepharoplasts after 24 h of recovery. After washout, arrays formed in new sperm cells such as the spline and basal bodies were often malformed or present in multiple copies, as were the blepharoplasts in these cells prior to wash out. These data indicate that the blepharoplast serves as the site of MT nucleation and organization even after complete MT de-polymerization.  相似文献   

3.
Vaughn KC  Renzaglia KS 《Protoplasma》2006,227(2-4):165-173
Summary. Ginkgo biloba and the cycads are the only extant seed plants with motile sperm cells. However, there has been no immunocytochemical characterization of these gametes to determine if they share characteristics with the flagellated sperm found in bryophytes and pteridophytes or might give clues as to the relationships to nonflagellated sperm in all other seed plants. To determine characteristics of proteins associated with the motility apparatus in these motile sperm, we probed thin sections of developing spermatogenous cells of Ginkgo biloba with antibodies to acetylated and tyrosinated tubulin and monoclonal antibodies that recognize mammalian centrosomes and centrin. The blepharoplast that occurs as a precursor to the motility apparatus consists of an amorphous core, pitted with cavities containing microtubules and a surface studded with probasal bodies. The probasal bodies and microtubules within the blepharoplast cavities are labeled with antibodies specific to acetylated tubulin. Positive but weak reactions of the blepharoplast core occur with the centrosomereactive antibodies MPM-2 and C-9. Reactions to centrin antibodies are negative at this developmental stage. From this pre-motility apparatus structure, an assemblage of about 1000 flagella and associated structures arises as the precursor to the motility apparatus for the sperm. The flagellar apparatus consists of a three-layered multilayered structure that subtends a layer of spline microtubules, a zone of amorphous material similar to that in the blepharoplast, and the flagellar band. Centrin antibodies react strongly with the multilayered structure, the transition zone of the flagella, and fibrillar material near the flagellar base at the surface of the amorphous material. Both the spline microtubules and all of the tubules in the flagella react strongly with the antibodies to acetylated tubulin. These localizations are consistent with the localizations of these components in pteridophyte and bryophyte spermatogenous cells, although the blepharoplast material surrounding and connecting flagellar bases does not occur in the seedless (nonseed) land plants. These data indicate that despite the large size of ginkgo gametes and the taxonomic separation between pteridophytes and Ginkgo biloba, similar proteins in gametes of both groups perform similar functions and are therefore homologous among these plants. Moreover, the presence of acetylated tubulin in bands of microtubules may be a characteristic shared with more derived non-flagellated sperm of other conifers and angiosperms. Correspondence and reprints: Southern Weed Science Research Unit, USDA Agricultural Research Service, P.O. Box 350, Stoneville, MS 38776, U.S.A.  相似文献   

4.
Summary During the development of the spermatogenous cells, the pteridophyteCeratopteris richardii produces three structurally well-defined microtubule organizing centers (MTOCs). The blepharoplast, a spherical body that occurs during the last two spermatogenous divisions, organizes two microtubule (MT) arrays, one associated with a nuclear indentation and the other that organizes the spindle apparatus for the final divisions. After the last spermatogenous division, the blepharoplast reorganizes to produce two new putative MTOCs: the lamellar strip (LS) of the multilayered structure (MLS), which apparently organizes the spline microtubule array, and an amorphous zone (AM), that connects the basal bodies. Thin and semi-thin sections of this tissue were probed with antisera which recognize MTOCs in lower eukaryotes and animals to determine if any of these structures contain MTOC-associated proteins or epitopes recognized by monoclonal antisera. Gamma tubulin antibodies, which recognizeonly the minus ends of MTs in mammalian cells, label along the MT in all arrays found in the pteridophyte spermatogenous cells. Kinetochore MTs are unlabelled near the kinetochore, however. The monoclonal antibodies MPM-2 and C-9, that recognize centrosomal and nuclear epitopes in mammalian cells, label the interphase nucleus, the cytoplasm of mitotic cells, and the blepharoplast during both nuclear indentation and spindle formation. Double labelling of the blepharoplast-containing cells with anti-tubulin and either MPM-2 or C-9 reveals that the blepharoplast-associated fluorescence is the focus of the tubulin arrays. Centrin labels the reorganizing blepharoplast, the MLS, the AM, and a stellate pattern in the transition region of the flagella. These data indicate the usefulness of the structurally well-recognized MTOCs in pteridophyte spermatogenous cells in investigation of land plant MTOCs.  相似文献   

5.
Sperm formation was studied in the fern, Marsilea, and the cycad, Zamia, with particular emphasis on the centrioles. In Marsilea, the mature sperm possesses over 100 flagella, the basal bodies of which have the typical cylindrical structure of centrioles. Earlier observations by light microscopy suggested that these centrioles arise by fragmentation of a body known as the blepharoplast. In the youngest spermatids the blepharoplast is a hollow sphere approximately 0.8 µ in diameter. Its wall consists of closely packed immature centrioles, or procentrioles. The procentrioles are short cylinders which progressively lengthen during differentiation of the spermatid. At the same time they migrate to the surface of the cell, where each of them puts out a flagellum. A blepharoplast is found at each pole of the spindle during the last antheridial mitosis, and two blepharoplasts are found in the cytoplasm before this mitosis. Blepharoplasts are also found in the preceding cell generation, but their ultimate origin is obscure. Before the last mitosis the blepharoplasts are solid, consisting of a cluster of radially arranged tubules which bear some structural similarity to centrioles. In Zamia, similar stages are found during sperm formation, although here the number of flagella on each sperm is close to 20,000 and the blepharoplast measures about 10 µ in diameter. These observations are discussed in relation to theories of centriole replication.  相似文献   

6.
采用常规石蜡制片技术和环氧树脂半薄切片技术,对银杏的精细胞结构及受精过程进行了研究。结果表明,临近受精前,精原细胞分裂形成两个半球形的精细胞,每个精细胞内含液泡状结构、生毛体和纤维性颗粒体各一个。两精细胞的液泡状结构其位置可同时或分别位于近极面和远极面,这种位置的变动可能是鞭毛摆动导致精细胞的旋转所引起,这说明银杏的精细胞在花粉管内也许即可以旋转运动。在银杏受精前后,珠孔端颈卵器室附近的珠心组织表现出向上隆起、出现受精滴、皱褶等规律性变化,这些现象是判断银杏受精时期的良好形态特征。在银杏受精时带有鞭毛的完整精细胞进入颈卵器,随后鞭毛带及精细胞质遗留于颈卵器口下方、卵细胞上面,仅精核进入卵细胞。进入卵细胞的精核直径约30μm,小于成熟精细胞的精核直径(约40μm)。这些对探讨银杏的系统地位及裸子植物的生殖演化具有一定意义。  相似文献   

7.
Spermatogenesis in Marsilea vestita is a rapid process that is activated by placing dry microspores into water. Nine division cycles produce seven somatic cells and 32 spermatids, where size and position define identity. Spermatids undergo de novo formation of basal bodies in a particle known as a blepharoplast. We are interested in mechanisms responsible for spermatogenous initial formation. Mago nashi (Mv-mago) is a highly conserved gene present as stored mRNA and stored protein in the microspore. Mv-mago protein increases in abundance during development and it localizes at discrete cytoplasmic foci (Mago-dots). RNA interference experiments show that new Mv-mago protein is required for development. With Mv-mago silenced, asymmetric divisions become symmetric, cell fate is disrupted, and development stops. The alpha-tubulin protein distribution, centrin translation, and Mv-PRP19 mRNA distribution are no longer restricted to the spermatogenous cells. Centrin aggregations, resembling blepharoplasts, occur in jacket cells. Mago-dots are undetectable after the silencing of Mv-mago, Mv-Y14, or Mv-eIF4AIII, three core components of the exon junction complex (EJC), suggesting that Mago-dots are either EJCs in the cytoplasm, or Mv-mago protein aggregations dependent on EJCs. Mv-mago protein and other EJC components apparently function in cell fate determination in developing male gametophytes of M. vestita.  相似文献   

8.
The structure of spermatogenous cell of Cephalotaxus is unique among the gymnosperms. While towards the mature stage, its nucleus is close to one side of the spermatogenous cell, and on the other side there is abundant and prominent . cytoplasm, which contain a group of the aggregate cytoplasms of radial arrangement similar to blepharoplast of spermatogenous cell of Ginkgo. But, there are two opposite blepharoplasts at either side of the nucleus in Ginkgo, and while there is only one blephareplast at one side in Cephalotaxus. This is one feature of the sexual process in Cephalotaxus. When the pollen tubes approach the top of the archegonia, the division of the spermatogenous cell takes place and there are two almost similar sperm cells both in size and morphology. It is interesting to note that the cytoplasm of the sperm cell contains certain granules of nucleolus-like structure, which appears to be a rare phenomenon among the gymnosperms. This is another feature of the sexual process in Cephalotaxus. These two features are the important characters of Cephalotaxaceae. The egg morphology of Cephalotaxus is also unique among the conifers, its outline looks like a carrot. The upper part of the egg is rather wide and is about 85 to 108 μm in width. On the other hand, the opposite end is gradually becoming narrow and about 910 to 1100 μm in total length. So the ratio of the length and width in the egg of Cephalotaxus is about 10:1. The structure of the egg in Celhalotaxus fortunei and C. oliveri have the following common feature: 1. When their eggs mature the cytoplasm of the egg at lower part of the nucleus possesses deep- staining and fine granules of 2 to 3 groups of aggregate cytoplasm. 2. During maturation of the egg, some of the granules of nucleolus-like structure are scattered in the cytoplasm. As fer- tilization takes place the number of these granules reaches the peak. This condition has been encountered in the egg of Amentotaxus argotaenia. Therefore we could conclude that they are closely related between Cephloraxaceae and Taxaceae. The fertilization of Cephalotaxus fortunei occured on May 10 to 24 (1983), and that of C. oliveri took place on May 28 to June 13 (1983). The fertilization of the genus belong to the type of undergoing mitosis prior to complete fuse of both male and female nuclei. This type of fertilization has been found only in Pinaceae and Cephalotaxaceae. After fertilization the structure of fertilized egg becomes prominent in polar organization. In other words, the cytop- lasm at upper part of the fertilized egg becomes highly vacuolated and that at lower portion, conversely, is rich in abundant proteinous vacuoles and certain granules of nucleolus-like structure dispersed in the cytoplasm. Because the division and differentiation of the proembryo are proceeding at the base of the archegonium, the large inclusions and the nucleolus-like granules may be involved in the nourishing and development of the proembryo.  相似文献   

9.
K F Lechtreck  A Grunow 《Protist》1999,150(2):163-181
Basal body replication in the naked biflagellate green alga Spermatozopsis similis was analyzed using standard electron microscopy and immunogold localization of centrin, an ubiquitous centrosomal protein, and p210, a recently characterized basal apparatus component of S. similis. Fibrous disks representing probasal bodies appear at the proximal end of parental basal bodies at the end of interphase and development proceeds via a ring of nine singlet microtubules. Nascent basal bodies dock early to the plasma membrane but p210, usually present in basal body-membrane-linkers of S. similis, was already present on the cytosolic basal body precursors. In addition to the distal connecting fiber and the nuclear basal body connectors (NBBC) of the parental basal bodies, centrin was present on the fibrous probasal bodies, in a linker between probasal bodies and the basal apparatus, in the connecting fiber between nascent basal bodies and their corresponding parent, and, finally, a fiber linking the nascent basal bodies to the nucleus. This NBBC probably is present only in mitotic cells. During elongation a cartwheel of up to seven layers is formed, protruding from the proximal end of nascent basal bodies. Microtubules develop on the cartwheel indicating that it temporarily functions as a microtubule organizing center (MTOC). These microtubules and probably the cartwheels, touch the nuclear envelope at both sides of a nuclear projection. We propose that spindle assembly is initiated at these attachment sites. During metaphase, the spindle poles were close to thylakoid-free lobes of the chloroplast, and the basal bodies were not in the spindle axis. The role of nascent basal bodies during the initial steps of spindle assembly is discussed.  相似文献   

10.
The blepharoplast, an elliptical, compact spherical body ranging 0.5~0.6 /μm in diameter, appears in the cytoplasm of the sperm mother cell during the sperm development of Lygodium japonicum (Thunb.) Sw. It consists of cartwheel tubular subunits arranged in radiant pattern and amorphous material. Numerous microtubules extended from the blepharoplast into cytoplasm. In the process of sperm cell development, the blepharoplast became loose, and the centrioles originated from the subunits separated from each other and dispersed towards the surface, with the amorphous material in the center. Accompanying the differentiation of the centrioles, muhilayered structure with the spline ( i. e. microtubular band) and lamella strata came into existence, with one end attaching to the amorphous material in the center. Then the muhilayered structure (MIS) associated with a mitochondrion and moved towards the nucleus, and a dent facing the MIS is formed in the nucleus. A cotton-like structure consisting of amorphous material and dardyed small tubular structure appeard in late stage of spermatogenesis. Microtubules were seen protruding from the surface of the cotton-like structure. It is suggested that this structure might be relevant to the origin of the blepharoplast.  相似文献   

11.
Electron microscopical studies were carried out on spermatid and sperm structure in P. pictus. The spermatid nuclear envelope possesses pores and is surrounded by microtubules which disappear on metamorphosis to sperm though centriolar adjunct, and its corresponding centriole comprising the basal body for flagellum. remains persistent in both. The mitochondria are arranged as two fused bodies with prominent cristae flanking the central axoneme and also contain curved end feet. In axoneme the microtubular complex is comprised of 9 + 9 (doublet) + 2 tubules + nine coarse fibres and also reveals nine radial links with electron-dense link heads. In P. pictus an alteration in temperature range, ambient for its rearing and generation of fertile spermatozoa, induces the production of sterile sperms which are characterized by multiple axonemes and mitochondrial bodies engirdled by a common plasma membrane. Presence of phagocytic cells is also an essential feature of its testis and vas deferens. These spermeiophagic cells engulf the neighbouring spermatozoa as evidenced by the fragments of axoneme, nuclei, and acrosomes in their cytoplasm.  相似文献   

12.
Transmission electron microscopy of serial thin sections was used to reconstruct several early developmental stages of the blepharoplast in Coleochaete pulvinata spermatids. These were compared to published studies of blepharoplast development in Charales and the closest relatives of charophycean green algae among embryophytes, i.e., hornworts and liverworts. Bicentriolar centrosomes such as occur in bryophytes and fern allies were not observed in Coleochaete. Centriole replication in C. pulvinata was orthogonal as in Charales. The resulting two daughter centrioles were oriented perpendicularly and joined proximally by electron-dense material. Their orthogonal relationship was maintained throughout blepharoplast development by a massive, banded connective which appeared early. In spermatids of hornworts and liverworts, a multilayered structure (MLS) develops in association with two centrioles destined to become flagellar basal bodies. When the MLS of these lower land plants is sectioned at right angles to the long axis of the microtubular layer, the MLS is observed to lie beneath cross sections of both centrioles. In contrast, when developing MLSs of C. pulvinata and Charales are similarly sectioned, they occur beside a cross section of just one of the two centrioles. In C. pulvinata (as in other charophytes), MLS lamellae are oriented at a 90-degree angle to the long axis of the S1 microtubules from the beginning. This contrasts with the 40–45 degree angle between the MLS lamellae and S1 microtubules universally reported for archegoniates. In early C. pulvinata spermatids, spline microtubules are closely associated with an anterior mitochondrion having a low stromal density and few cristae. An anterior mitochondrion is typically associated with blepharoplast development in hornworts and liverworts, but has not previously been reported to occur in Coleochaete or any other charophycean alga. In Coleochaete, as in hornworts and liverworts, but unlike Charales, structure of mature blepharoplasts reflects early blepharoplast ontogeny. Very little change in positional relationships among blepharoplast components (flagella, connective, MLS) occurs during development. These character-state differences are of importance in cladistic analyses of charophycean algae and lower land plants.  相似文献   

13.
蕨类植物海金沙(LygodiumJaponicum(Thunb.)Sw.)的游动精子发育过程中,生毛体在精母细胞的细胞质中出现,它是直径为0.5-0.6μm的椭球体,其结构紧密,由辐射排列的具轮辐结构的管状亚单位和无定形基质组成。大量微管从生毛体伸向细胞质。随着精细胞的发育,生毛体结构变得松散,亚单位分化形成的中心粒彼此分开扩散到外围,中心为无定形物质。伴随着中心粒的分化,多层结构出现,一端与无定形基质相连。多层结构由外侧的微管带及内侧的片层组成,形成后与一线粒体相连,移向靠近核的位置,并正对着核上出现凹点。研究发现在精原细胞后期出现一团絮状结构,为无定形基质,其中有深染色的小管状结构分布,同时可见微管从絮状结构边缘伸出,这一絮状结构可能与生毛体的产生有一定的关系。  相似文献   

14.
Summary Details concerning the appearance and behaviour of blepharoplasts during spermatogenesis, and the assembly of the cytoskeletal motile apparatus of spermatids were elucidated by immunofluorescence microscopy using antibodies to tubulin and actin, applied to material prepared from antheridia of the fernPteridium aquilinum (L.) Kuhn. Blepharoplast immunofluorescence with antitubulin first appears as spheres at the future spindle poles prior to the last spermatogenous division. Developing spermatids each have one blepharoplast, which gives rise to a triangular layer corresponding to the incipient microtubule ribbon. Compared to the ribbon, immunoreactivity of the multilayered structure is relatively weak. Intensely fluorescing basal bodies appear, increase in number, and become arranged in rows along two edges of the microtubule ribbon as it widens and elongates. Along the dorsal edge is a dense file of basal bodies spaced at about 0.3 m intervals, parallel to each other and oriented at 145° to the multilayered structure. This spacing and orientation is maintained throughout spermatid development. Basal bodies at the opposite edge are initially oriented at 115° to the multilayered structure but become rearranged into small groups that rotate so that the angle is reduced to 55–70° by the time the assembly of flagella commences on both sets of basal bodies. By this stage the microtubule ribbon has encircled about 2/3 of the nuclear circumference and the nucleus is assuming a crescent shape. In fully developed spermatozoids the groups of basal bodies are oriented at 25° to the multilayered structure, parallel to the long body of the now helical nucleus. Immunofluorescence using antiactin showed that towards the completion of nuclear shaping, actin forms a strip along the helical multilayered structure. Detergent-extraction of mature spermatozoids revealed that actin is associated also with the flagellar band, particularly with basal bodies.Abbreviations MLS multilayered structure - MT microtubule  相似文献   

15.
CAVE  C. F.; BELL  P. R. 《Annals of botany》1979,44(4):407-415
Treatment of developing antheridia of Pteridium aquilinum for24 h with radioactive and normal colchicine resulted in spermatocyteswith restitution nuclei, binucleate spermatocytes with multipleimmature blepharoplasts, and spermatids in which the organizationof the microtubular ribbon and basal bodies, and the shapingof the nucleus were seriously disturbed. The results indicatethat the coiling of the multilayered structure and the condensationof the chromatin, two key events in spermatogenesis, are independentof tubulin polymerization. Transitional stages were observed between the granular materialof the blepharoplast and microtubules. Colchicine affected theassembly of the cartwheel structure of the basal bodies lessthan that of the triplets, which were often rudimentary or absent.Autoradiographs were only partially successful because of thefailure to devise a satisfactory method of embedding by freeze-substitution,but there was clear evidence of colchicine binding by nucleiin young spermatocytes. Pteridium aquilinum (L.) Kuhn, bracken, spermatogenesis, colchicine  相似文献   

16.
The assembly and composition of basal bodies was investigated in the single-celled, biflagellate green alga, Chlamydomonas reinhardtii, using the cell wall-less strain, cw15. In the presence of EDTA, both flagellar axonemes remained attached to their basal bodies while the entire basal body-axoneme complex was separated from the cell body, without cell lysis, by treatment with polyethylene glycol-400. The axonemes were then removed from the basal bodies in the absence of EDTA, leaving intact basal body pairs, free from particulate contamination from other regions of the cell. The isolated organelles produced several bands on sodium dodecyl sulfate-urea polyacrylamide gels, including two tubilin bands which co-electrophoresed with flagellar tubulin. The formation of probasal bodies was observed by electron microscopy of whole mount preparations. Synchronous cells were lysed, centrifuged onto carbon-coated grids, and either negatively stained or shadowed with platinum. The two probasal bodies of each cell appeared shortly after mitosis as thin "annuli," not visible in thin sections, each consisting of nine rudimentary triplet microtubules. Each annulus remained attached to one of the mature basal bodies by several filaments about 60 in diameter, and persisted throughout interphase until just before the next cell division. It then elongated into a mature organelle. The results revive the possibility of the nucleated assembly of basal bodies.  相似文献   

17.
Dividing cells of Tetrahymena pyriformis were observed by transmission electron microscopy for signs of morphogenesis of cortical structures. The earliest stage of basal body development observed was of a short cylinder of nine single tubules connected by an internal cartwheel structure. This is set perpendicular to the mature basal body at its anterior proximal surface under the transverse microtubules and next to the basal microtubules. Sequential stages show that the single tubules become triplet tubules and that the "probasal bodies" then elongate and tilt toward the organism's surface while maintaining a constant distance of 75–100 mµ with the "parent." The new basal body after it is fully extended contacts the pellicle, and then assumes a parallel orientation with and moves anterior to the parent basal body. The electron-opaque core in the lumen of the basal body and accessory structures around its outer proximal surface appear after the developing basal body has elongated. These accessory structures associating with their counterparts from other basal bodies and with the longitudinal microtubules may play a role in the final positioning of basal bodies and thus in the maintenance of cortical patterns. Observations on a second sequence of basal body formation suggest that the oral anlage arises by multiple duplication of somatic basal bodies.  相似文献   

18.
The mature spermatozoon of Anomotaenia quelea exhibits an apical cone of electron-dense material and two helicoidal crest-like bodies. The apical cone near its base is surrounded by a lucent cytoplasm and a spiraled layer of cortical microtubules. The crest-like bodies are of different lengths, spiraled and make an angle of 30–40° to the hypothetical spermatozoon axis. The axoneme is of the 9 + ‘1’ trepaxonematan pattern and is surrounded by a periaxonemal sheath of electron-dense material. The cytoplasm contains in regions III and IV numerous electron-dense granules situated between the periaxonemal sheath and the cortical microtubules. The posterior extremity of the spermatozoon of A. quelea exhibits a nucleus and a disorganized axoneme and cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in a Dilepididae. Similarly, two crest-like bodies have not been observed before in a dilepidid cestode.  相似文献   

19.
Chilomastix equi n.sp., from the intestine of the Indian horse is described. The normal shape of the body is pyriform, posteriorly drawn out into a spike. The spiral groove is U-shaped and runs from one lateral side to the other. The nucleus is either ovoidal or spheroidal with an eccentric endo-some. Four blepharoplasts are present from which arise the anterior flagella, the cytostomal flagellum and the cytostomal fibrils. The arrangement of the four blepharoplasts differs markedly from the other known species, three being on the anterior border located in one row and the fourth adjacent to the nucleus. The three anterior flagella, arising from the first three anterior blepharoplasts, run backwards. The cytostomal flagellum arises from the fourth blepharoplast and rarely protrudes beyond the broad cytostome. The cytostome has a peculiar shape which distinguishes it from other species. The dimensions of the new species range (in microns) 15.7 to 31.5 in total length, 8.5 to 16.5 in body length proper, 6.0 to 15.5 in breadth and 4.0 to 17.0 in the length of the spike.  相似文献   

20.
四种淡水养殖鱼类血细胞的细微结构   总被引:10,自引:0,他引:10  
四种淡水鱼的血细胞形态基本相似。红血球形态与其他低等脊椎动物基本相似。淋巴球绝大部分是小淋巴球:单核球数量较少;四种鱼的嗜中性白血球形态结构差不多,胞核多为蚕豆形,很少见分叶核,分叶一般也只有二叶,这与哺乳类显然不同;嗜酸性白血球的形态结构与其他脊椎动物基本相似;在少数血涂片中看到了嗜碱性白血球。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号