首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitotic chromosome counts were made from field collected and subsequently cultivated plants of 61Pelargonium species from 14 sections. The 33 new results are presented. 47 of the species have a basic number of x = 11, nine spp. of x = 9 and five spp. of x = 8. 17 spp. are polyploid. In two sections species with different basic numbers occur, which is of interest for the subgeneric classification. The size of the chromosomes varies between the investigated species. Most but not all species with x = 11 have short, those with x = 8, 9 large, and only exceptionally short chromosomes. Within sections chromosome size is not always uniform. The relationship between the different basic chromosome numbers is discussed.  相似文献   

2.
The Lobelioideae is a cosmopolitan group whose cytoevolution is discussed on a model of primitively high diploid chromosome numbers, in which x = 14 is relatively plesiomorphic and x = 21 may be even more plesiomorphic. This model is suggested from the high frequency of lobelioid genera with x = 14, the probably plesiomorphic condition of x = 17 in the sister group Campanuloideae (Campanulaceae), and the primitive x = 15 in Stylidiaceae (Campanulales). It contrasts with that for a primitive x = 7 and paleopolyploidy to higher chromosome numbers. In our analysis, the genus Lobelia shows three broad cytoevolutionary groups, which probably have phylogenetic and infrageneric taxonomic significance: (1) woody diploids with x = 21 in Chile and woody diploids with x = 14 in Africa, Asia, and Hawaii; (2) herbaceous diploids with several series of dysploid chromosome numbers n = 19, 13, 12, 11, 10, 9, 8, 7, 6, mainly in Africa and Australia; (3) widespread and speciose herbaceous taxa based on a very derived n = 7, with recent frequent euploid rises (neopolyploidy) at or below the species level in subgenus Lobelia and allied or segregate genera. Other woody and herbaceous lobeliad genera have comparable cytoevolutionary patterns. New chromosome counts for Australian Lobelia, Pratia, and Isotoma illustrate the last two cytoevolutionary groups.  相似文献   

3.
Chromosome counts are reported for 76 taxa and 2 natural hybrids of tribe Senecioneae (Compositae). First counts are reported for several species of Senecioneae as well as for the genera Cadiscus and Whitneya. New chromosome numbers are added to those previously known in Arnica, Cacalia, and Senecio. Additional counts from Arnica support our previous suggestion that x = 19 for this genus. It is assumed that observed meiotic irregularities are associated with apomixis in this genus. Basic chromosome numbers for various New World sections of Senecio are proposed, and certain problems of sectional relationships in this genus are discussed. Chromosome numbers and plant morphology of Cadiscus, Hulsea, and Whitneya indicate that these genera should be removed from Helenieae to Senecioneae. The possible affinity of the anomalous genus Adenocaulon with Mutisieae is discussed. Data presented in the paper further support our earlier proposal that the basic chromosome number for Senecioneae is x = 10.  相似文献   

4.
Chromosome numbers of 65 species of sect.Hoarea have been determined. These show three basic chromosome numbers, x = 11, 10 and 9. Only a few species are tetraploid. In five species both diploid and tetraploid cytotypes are reported. Several cases of deviations in chromosome numbers and cytological abnormalities were found, most of these being related to the presence of B chromosomes that occur in eight species. Evidence is presented to suggest that the basic chromosome numbers of x = 10 and x = 9 are derived from x = 11 by centric fusion. Although variation in basic chromosome number withinPelargonium has been the subject of detailed study, this is the first time that evidence has been found for a mechanism of change in basic number, that of centric fusion by Robertsonian translocation. For the species of sect.Hoarea with x = 9, where the evidence for Robertsonian translocation is greatest, this process has probably taken place quite recently. In contrast to results from other sections of the genusPelargonium, the three different basic numbers of sect.Hoarea do not contradict its delimitation as a natural taxon.  相似文献   

5.
One hundred and ninety-three new counts are reported for the tribe Heliantheae of Compositae, mostly based on determinations of meiotic material, including first counts for the genera Adenothamnus, Chrysogonum, Enceliopsis, Guardiola, Isocarpha, Lipochaeta, Otopappus, and Oyedaea, as well as first counts for 66 species. The original counts are discussed in relation to those previously reported for the tribe, by genera and subtribe. Two-thirds of the approximately 150 genera and more than a third of the roughly 1500 species have now been examined. The incomplete knowledge of generic relationships in the tribe often make the interpretation of these chromosome numbers difficult. Three observations are documented and discussed: (1) genera with low chromosome numbers are few; (2) genera with aneuploid series are abundant; and (3) the original basic chromosome number in the tribe is probably in the range of x = 8 to x = 12.  相似文献   

6.
Chromosome counts are reported for 33 species from all four sections of the genus Haplopappus in South America. These include first reports for 28 species and two putative hybrids. All chromosome numbers reported herein are 2n = 5II, with the exception of H. prunelloides with 2n = 6II. Unlike the North American species, the morphological diversity of South American taxa is not concomitant with chromosomal variation.  相似文献   

7.
The chromosome numbers of seven species ofPelargonium sect.Eumorpha have been determined from material of known wild origin, and karyotypic comparisons have been made. Within the section there is variation in basic chromosome number (x = 4, 8, 9, 11), variation in chromosome size, and two species have polyploid races. The three species with chromosome numbers based on x = 11 have the smallest chromosomes (1.0–1.5 µm); chromosomes are larger (1.0–3.0 µm) in the other species.P. elongatum has the lowest chromosome number in the genus (2n = 8).P. alchemilloides is exceptional in that it has four cytotypes, 2n = 16, 18, 34 and 36, and the form with 2n = 36 has large chromosomes (2.0–5.0 µm). Evidence from a synthesized hybrid suggests thatP. alchemilloides with 2n = 16 may be of polyploid origin. The three species based on x = 11 appear to be more closely related to species from other sections ofPelargonium that have the same basic chromosome number and small chromosome size, rather than to other species of sect.Eumorpha.  相似文献   

8.
The karyology ofCentaurea sect.Acrocentron is surveyed. 19 chromosome counts on 8 species are reported; those onC. acaulis, C. crocata, C. galianoi, C. pubescens, andC. malinvaldiana are new. The basic chromosome numbers of the section are x = 11 and x = 10. Karyological arguments have been used to show that evolution was from x = 11 to x = 10. This is supported by biogeographical data. Two main centres of diversification of sect.Acrocentron were studied from that point of view: the East and the Southwest Mediterranean region.  相似文献   

9.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

10.
A study of 33 species ofPelargonium sect.Ligularia reveals four basic chromosome numbers, x = 8, 9, 10, and 11, and variation in chromosome size. From evidence of karyology and hybridization attempts, proposals are made to divide the section into smaller groups and to transfer some species to other sections.  相似文献   

11.
A study was made on the phylogenetic relationships of species of the family Resedaceae, based on morphological features, chromosome meiotic behaviour, karyotype features, size and fertility of pollen grains, nucleotypic parameters, seed protein profiles and esterase isozyme patterns.For the comparison of the seed protein profiles among species a method was developed based on the presence or absence of the bands by means of a computer program. The dendrogram obtained by such a method is in line, to a great extent, with the clusters (sections) obtained within the family based on morphological features.Data on meiotic behaviour and on morphology, such as the type of fruit, carpel numbers and others, suggest that x=5 is the primitive basic chromosome number of this family. x1=6 and x2=7 are considered as secondary basic numbers derived from x=5 through aneuploid changes.The results support a proposed phylogenetic tree of the genera and sections of the genus Reseda represented in the European Flora.The principal phenomena that have operated in the evolution of the Resedaceae seem to be aneuploid changes, polyploidy and structural rearrangements. A trend towards DNA increase in the evolution of this group is also apparent.  相似文献   

12.
Chromosome numbers are now known for 153 species in 21 genera of Lobelioideae (Campanulaceae); this represents almost 13% of the species and 70% of the genera in the subfamily. Numbers reported are n = 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 21, 35, 70. The subfamily as a whole has x = 7; the best documented exception is Downingia and its allies with x = 11. Only four genera show interspecific variation in chromosome number: Downingia (n = 6, 8, 9, 10, 11, 12); Lobelia (n = 6, 7, 9, 12, 13, 14, 19, 21); Pralia (n = 6, 7, 13, 14, 21, 35, 70); and Solenopsis (n = 11, 14). Intraspecific variation occurs in 13 species, with as many as four different cytotypes in one species. The herbaceous members of the subfamily as a group are quite variable, showing the entire range of chromosome numbers, including numerous dysploids, but are predominantly diploid. The woody species, by contrast, are much less variable; nearly all of the species are tetraploid, with only a few diploids and hexaploids and no dysploid numbers known. These data support the hypothesis that woodiness is apomorphic within the subfamily. A general trend of higher chromosome numbers at higher latitudes and higher elevations is evident within the subfamily. The chromosome number of Apetahia raiateensis (n = 14) is reported here for the first time, on the basis of a count made about 30 years ago by Peter Raven.  相似文献   

13.
Raven , Peter H. (Rancho Santa Ana Botanic Garden, Claremont, Calif.), and Donald W. Kyhos. Chromosome numbers in Compositae. II. Heleniae. Amer. Jour. Bot. 48(9): 842–850. Illus. 1961.—Chromosome counts are now available for 42 of the approximately 55 genera of Compositae, tribe Helenieae, which is predominantly a group of western North America. These chromosome numbers are summarized here at the generic level, and 100 original counts for the tribe are added, including what seem to be the first published reports for the genera Amblyopappus, Baeriopsis, Hulsea, Jaumea, Pericome, Rigiopappus, Trichoptilium, and Venegasia, as well as for many species. The phylogeny of Chaenactis is discussed in the light of published records and 46 original counts, and C. douglasii is shown to include plants in which n = 6, 12, and 18, which differ somewhat morphologically. Helenium has species which have a complete series of aneuploid numbers from n = 13 to n = 17. Chromosome numbers coincide with morphological variability in indicating that Helenieae are a diverse group. More detailed studies of various kinds will be necessary before the genera of Helenieae can be re-aligned effectively, but it is evident that different genera show affinities with various other tribes of the family. Nevertheless, it is thought to be convenient to continue to recognize Helenieae at the tribal level for the present.  相似文献   

14.
New chromosome counts for 9 species and 2 genera of Sapindaceae are presented and compared with a review of all available chromosome numbers of the family. In 4 species diploid numbers differing from previous reports are found. In 4 species of the tribe Paullinieae (S. diversiflora, S. subdentata, C. grandiflorum and C. halicacabum) detailed studies on interphase nucleus structure, condensing behaviour and chromosome banding patterns are presented. The karyological differentiation of Paullinieae is generally characterized by dysploid reduction of chromosome numbers and the increase of chromosome size. Sequential staining of nuclei with CMA/DAPI and Giemsa-C-banding demonstrates diversification of constitutive heterochromatin (= hc) and different types of chromatin organization in Serjania and Cardiospermum. The obvious lack of polyploid series and the karyological evolution within the family is discussed. The outstanding small genome size found in Cardiospermum halicacabum is considered to be due to a secondary loss of DNA in the course of the change to herbaceous growth.  相似文献   

15.
The chromosome numbers of the 24 species of sect.Pelargonium were determined from field collected and cultivated plants of known localities in S. Africa. Twelve species are diploid (2n = 22), eight tetraploid (2n = 44), one hexaploid (2n = 66), and three octoploid (2n = 88). The chromosome numbers correlate well with the proposed subdivision of sect.Pelargonium. Its chromosomes are relatively small (1.0–1.5 µm) in comparison to most of the other sections, and its diploid karyotype is considered to be primitive. The occurrence of the basic number x = 11 in this section, in other sections of the genus, and in related genera (Monsonia, Sarcocaulon) leads to the conclusion that x = 11 probably is basic for the whole genus. — The pollen meiosis, microsporogenesis and pollen fertility of the diploid species is normal, with the exception of one, possibly young taxon from the Greyton Nature Reserve. The tetraploid species could be of autoploid origin, the higher polyploids exhibit a mixed auto-alloploid nature. — The 20 diploid and tetraploid species have a relatively small distribution range, most of them occur in the SW. Cape Province of South Africa. This area may therefore be considered as the centre of origin of the genus. Three of the four high polyploid species occupy rather large areas.
Untersuchungen zur Karyologie und Mikrosporogenese der GattungPelargonium, 1.  相似文献   

16.
Analyses of meiotic and mitotic chromosomes were undertaken in 16 taxa of Echinocereus belonging to 12 species and all seven taxonomic sections (sensu Taylor). Chromosome numbers are reported for the first time for eight taxa, and previously published chromosome counts are confirmed for the remaining eight. Both diploid and polyploid counts were obtained. Eleven (69%) of the taxa surveyed were diploid (2n = 22); the five varieties of E. engelmannii were polyploid (2n = 44). Overall, chromosome counts are available for 23 of the 48 proposed species (sensu Taylor). Of these, 19 (82%) are diploid, and four (18%) are polyploid. Polyploid cytotypes are most common in the primitive sections, e.g., sections Erecti and Triglochidiatus, which suggests that polyploidy is probably a derived condition in Echinocereus. Polyploid taxa range from medium to high latitudes and elevations relative to the overall distribution of the genus. Polyploidy, hybridization, and cryptic chromosomal rearrangements are thought to be the major causes of the speciation events of the genus.  相似文献   

17.
Chromosome numbers are reported for 156 collections representing 100 taxa of Umbelliferae. Approximately two thirds of the collections are from Mexico, Central and South America and indicate a high percentage of polyploid species in certain genera found in this area. Chromosome numbers for plants belonging to 78 taxa are published here for the first time, previously published chromosome numbers are verified for 18 taxa and chromosome numbers differing from those previously published are reported in seven instances. No chromosome counts have been previously published for nine of the genera included here. Further aneuploidy and polyploidy were found in Eryngium, and Lomatium columbianum has been found to be a high polyploid with 2n = 14x. Every chromosome count is referable to a cited herbarium specimen.  相似文献   

18.
Mitotic or meiotic chromosome studies are reported for 39 species or subspecies of Oxalis from South America belonging to 14 sections. Chromosome numbers of 34 of these taxa are reported for the first time. Diploids and polyploids with six different basic chromosome numbers x=5, 6, 7, 8, 9 and 11 are described. Thirteen species of subgenus lhamnoxys were analysed and two new basic chromosome numbers were observed in diploid entities of this subgenus, x = 6 and x=9. The underground stem-bearing entities of Oxalis subgenus Oxalis studied (in sections Articulatae, Jonoxalis and Palmatifoliae) are mostly diploids and polyploids with a basic chromosome number x=7. Five species of section Carnosa are diploids with x = 9. In species of sections Rosea, Ortgieseae, Clematodes and Laxae the basic chromosome numbers x = 6, 7, 8 and 9 were observed. Groups of related species sharing the same chromosome number are discussed with the aim of improving the infrageneric delimitation of the genus. The basic chromosome number x=6 seems to be primitive in the genus and other basic chromosome numbers probably appeared several times in the course of chromosome evolution of Oxalis .  相似文献   

19.
The chromosome numbers of five species ofOrobanche sect.Orobanche (O. alsatica, O. laserpitii-sileris, O. loricata, O. salviae, O. teucrii) are reported for the first time and previous counts could be verified in ten other species. Now the chromosome numbers of all species of sect.Orobanche occurring in Central Europe are known: they are diploid (2n = 38) with the exception ofO. gracilis (tetra- and hexaploid, aneusomatic).
  相似文献   

20.
染色体数目和倍性是系统与进化生物学和遗传学研究中十分重要的基础信息。为探索半蒴苣苔属染色体制片的适宜条件以及染色体数目的进化模式及其与物种的进化关系,该研究基于半蒴苣苔属染色体数目的进化历史,并根据该属植物具有叶片扦插繁殖的特性,采用叶片水培生根法获取半蒴苣苔(Hemiboea subcapitata)、弄岗半蒴苣苔(H.longgangensis)、龙州半蒴苣苔(H.longzhouensis)、江西半蒴苣苔(H.subacaulis var.jiangxiensis)、华南半蒴苣苔(H.follicularis)和永福半蒴苣苔(H.yongfuensis)6种植物的根尖材料,分析不同实验条件对染色体制片效果的影响,对染色体制片实验的条件进行优化及染色体计数,结果表明:(1)9:30—10:00取材,解离10 min以及染色15 min为半蒴苣苔属染色体制片的适宜条件。(2)上述6种半蒴苣苔属植物均为二倍体,染色体数目均为32(2n=2x=32)。(3)除个别物种染色体数目有变化以外,该属大部分物种染色体数目可能为2n=2x=32且染色体数目变化可能是非整倍化的作用,与物种进化没有明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号