首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Germinating spores of the fern Onoclea sensibilis L. were grown in darkness, so that they developed as filaments (protonemata). Brief daily exposure of the filaments to red, far-red or blue light increased the rate of filament elongation. Filament elongation was also promoted by indoleacetic acid. When filament elongation was promoted with both indoleacetic acid and exposure to light, the growth promotions caused by red and far-red light were additive to auxin-induced growth. Blue light promoted elongation only at sub-optimal concentrations of auxin. Elongation induced by guanine was additive to red- and far-red-induced elongation. Gibberellic acid had no effect on elongation under any condition. Blue-light-induced elongation resembled auxin-induced elongation in its requirement for exogenous sucrose and sensitivity to inhibition by parachlorophenoxyisobutyric acid. Red and far-red light were active regardless of the presence or absence of sucrose and promoted elongation at a concentration of parachlorophenoxyisobutyric acid which completely inhibited blue-light-induced elongation.  相似文献   

2.
Two effects of blue light on the development of Onoclea sensibilis spores are demonstrated. Brief irradiation promotes the protonemal or filamentous type of growth, and the rate of filament elongation is greater than in darkness. Longer periods of irradiation induce the formation of 2-dimensional prothallia. Blue-light treatments which promote filament elongation interact with elongation-promoting far-red light. Far-red irradiation alone promotes filament elongation to a greater extent than blue light, but a blue-light irradiation, either following or preceding far-red treatment, strongly inhibits the far-red promotion. In darkness, a slow recovery from the blue-light-induced loss of sensitivity to far-red takes place. The recovery may be greatly accelerated by interposing a red-light treatment between blue and far-red irradiation.  相似文献   

3.
Photoperiodic Responses of Brassica campestris cv. Ceres   总被引:1,自引:0,他引:1  
The photoperiodic responses of Brassica campestris L. cv. Ceres were investigated to determine the suitability of this plant for further studies on the spectral require ments for floral initiation. This is a long-day plant, sensitive to one inductive photocycle on the fourth day from germination. The flowering response increased with the length and intensity of a single period of supplementary light used to extend an 8-hour daylength and was greatest at 25°C. Application of nitrates retarded floral initiation by about two days under short day conditions, but did not affect the re sponse to one long day. Gibberellic acid induced earlier floral initiation under short day conditions. The photoperiodic response was little affected by omitting the main light period immediately before or after the supplementary light, as long as the intensity of supplementary light was greater than 5000 lux. Short interruptions (5–10 minutes) of a single 16-hour dark period with high energy red or far-red radiation did not promote flowering. When given continuously during a single 16-hour dark period, far-red radiation was more effective in flower promotion than an equal energy of red.  相似文献   

4.
First internodes of light-grown bean seedlings exposed to supplementary red and far-red light and those of dark-grown seedlings were sectioned and studied to determine the effects of irradiation on the cellular components of polarized growth. Cell counts and measurements of epidermis, cortex, and pith are given. Increased length of internodes of far-red-treated plants was caused by both increased rate and increased duration of cell elongation. The effect of far-red light is interpreted as a reversal of the accelerating effect of light upon cell maturation. It is suggested that investigations of the mechanism of the red, far-red response of stems be concerned with the processes involved in cell elongation. In darkness, rate and duration of cell division as well as rate and duration of cell elongation were greater than in any of the irradiated plants, indicating that only part of the photocontrol of stem elongation is mediated through the red, far-red system.  相似文献   

5.
The elongation of fern protonemata is controlled by red andfar-red light in an atypical fashion. Red light promotes theelongation of young plants but inhibits the elongation of olderplants. Far-red light promotes elongation regardless of filamentage, and the maximum promotion by far-red is greater than thepromotion which red light causes in young filaments. The elongationof rhizoids is under typical red, far-red control. Red lightpromotes elongation, and a period of far-red illumination followingred light treatment negates the promotive effects of red light. 1 Present address of the authors: Dept. of Bacteriology andBotany, Syracuse University, Syracuse, New York, U. S. A. (Received November 5, 1962; )  相似文献   

6.
Abstract. Glycine max (L.) Merr. was grown under several light conditions to determine the role of red and far-red radiation in plant adaptation to vegetation shade. Neutral density,‘neutral’ density with elevated far-red radiation, and green shade treatments were used in a greenhouse, producing calculated phytochrome photostationary state (Pfr/Pr+Pfr) values of 0.68, 0.63 and 0.51, respectively. Cool-white fluorescent lamps either alone or in conjunction with far-red fluorescent lamps were used in a growth chamber, providing Pfr/Pr+Pfr of 0.79 and 0.61, respectively. Daily photo-synthetically active radiation was about 25% of daylight and was approximately equal for both greenhouse (2.15MJ m?2) and growth chamber (2.57MJ m?2). Developmental stage 4 weeks after sowing was similar for all treatments, but axillary growth and rates of leaf area and dry matter accretion differed between plants from greenhouse and growth chamber. Light conditions simulating vegetation shade (i.e. a low ratio of red to far-red radiation) significantly promoted petiole elongation and retarded the rate of stem elongation in both greenhouse and growth chamber experiments. Other aspects of growth either were not significantly altered by spectral quality or were not modified consistently in both greenhouse and growth chamber environments. Net photosynthetic rates measured under growth conditions for unifoliate and first trifoliolate (TF1) leaves of growth chamber plants between 9 and 21 d after sowing were generally unaffected by spectral quality, but supplemental FR enhanced TF1 leaf area expansion. The latter effect was not correlated with increased dry matter accumulation. The significance of spectral quality for adaptation of soybeans to canopy closure and intercropping is discussed.  相似文献   

7.
T. A. Lie 《Plant and Soil》1969,30(3):391-404
Summary Nodulation of pea and broad bean plants grown in the light was found to be reduced when the roots were exposed to far-red light for 5–15 minutes daily during 5 consecutive days following inoculation with nodule bacteria. Similar results were obtained following a single exposure to far-red light during a period of 15 minutes at the 3rd or 4th day after inoculation. When the roots were exposed to far-red light either before inoculation or during the first two days afterwards there were either no effects or only slight effects on nodulation The inhibitory effect of far-red light on nodulation was partly reduced by subsequent exposure to red light, provided that the same part of the plant was exposed to both red and far-red light,viz either the root or the shoot. When different parts of the plant were exposed to red and far-red light respectively, there was no interaction between the two kinds of light on nodulation. Plants whose roots were exposed to far-red light did not subsequently show stem elongation.Nodules were found to develop on the roots of pea plants grown in the dark, provided that the plants were kept at or below 22°C. At 25°C nodulation was almost absent. Nodulation was decreased by addition of kinetin and IAA. In contrast to plants grown in the light pea plants grown in the dark, inoculated with either an effective or ineffective strain of Rhizobium, developed equal numbers of nodules. Exposure to red light slightly increased the percentage of nodulated plants but decreased the number of nodules per plant. Exposure to far-red light slightly decreased both the percentage of nodulated plants and the number of nodules per plant. The effect of far-red light was counteracted by red light andvice versa.  相似文献   

8.
Schulz , Sister M. Richardis , O.P., and Richard M. Klein . (N. Y. Bot. Gard., N. Y., N. Y.) Effects of visible and ultraviolet radiation on the germination of Phacelia tanacetifolia. Amer. Jour. Bot. 50(5): 430–434. Illus. 1963.—Germination of Phacelia tanacetifolia was suppressed by exposure to white light increasing with intensity and length of illumination. The light effect decayed during 24 hr of darkness. Seeds were most sensitive to the suppressive effects of light 13–17 hr after the beginning of imbibition. Light suppression was caused by a photocatalytic reaction. Wavelengths causing the suppression lie in the far-red, red, blue, near-ultraviolet and far-ultraviolet regions of the spectrum. At equal energies, blue light was less effective than far-red, red or ultraviolet radiation. There was no evidence for the existence of the phytochrome system. Simultaneous irradiation with red and blue light or simultaneous irradiation with red and far-red induced a synergistic repression of germination. The presentation of different wavelengths in various sequential patterns markedly altered the germination response. An interaction between elevated temperatures and visible radiation affecting germination response was also noted.  相似文献   

9.
Plant elongation in Allium cepa L. cv. Dorata di Parma was stimulated by end-of-day far-red radiation, while the same treatment was ineffective with respect to bulbing response. It was concluded that the Pfr-dependent reactions which control bulbing are completed during the long daily light period (18 h). Day breaks of 3 h fluorescent white light, in the middle of the inductive photoperiod were inhibitory to bulbing. Repeated brief far-red irradiations could substitute for continuous far-red irradiations lasting 3 h in the middle of the photoperiod. Red light alone or applied immediately after each far-red irradiation inhibits bulb formation.  相似文献   

10.
Piringer , A. A., R. J. Downs , and H. A. Borthwick . (U. S. Dept. of Agriculture, ARS, Belts ville, Md.) Photocontrol of growth and flowering of Caryopteris . Amer. Jour. Bot. 50(1): 86–90. Illus. 1963.—Flower buds were initiated on plants of Caryopteris × clandonensis A. Simmonds (C. incana [Houtt.] Miq. × C. mongholica Bunge) on all photopcriods but developed to anthesis only when daily dark periods exceeded 8 hr. Anthesis occurred in not less than 22 days after the beginning of 11 or more short photoperiods. Treatments with short days could be interrupted by as many as 30 non-inductive long days without significant increase in the minimum number of short days required for anthesis. Anthesis, like floral initiation of many plants, was reversibly controlled by red and far-red radiation acting through phytochrome. The inductive effectiveness of long dark periods was nullified by 1 min of red light or about 1 hr of far red. It was modified by night temperature in the range 45–70.F and filament lengths of stamens were shorter at night temperatures of 60 than at 70 F.  相似文献   

11.
Klein , Richard M. (New York Bot. Gdn., New York, N.Y.), and Deana T. Klein. Interaction of ionizing and visible radiation in mutation induction in Neurospora crassa. Amer. Jour. Bot. 49(8): 870–874. 1962.—Conidia of the purple adenineless strain of N. crassa were irradiated with 25 kr of X rays and then exposed to far-red or red radiations or to far-red followed by red radiation. Far-red light, without effect on un-irradiated conidia, augmented the genetic damage caused by X rays as measured by survival (colony count), back mutation to adenine prototrophy, and the induction of mutants affecting colony morphology. Post-X-irradiation with red light ameliorated the severity of X-radiation as measured by survival and back mutation. The potentiation of X-ray-induced genetic damage by far-red light could be completely negated by subsequent exposure to red light.  相似文献   

12.
The Nicotiana tabacum transgenic plants expressing a Cucurbita pepo antisense PHYA RNA were obtained. The seedlings of transgenic tobacco with reduced phytochrome A (PHYA) content displayed decreased sensitivity to continuous broad-band far-red radiation (λ > 680 nm). Under far-red irradiance transgenic seedlings showed less elongation of the hypocotyls, more rapid plastid development, more chlorophyll accumulation, less repression of lightdependent NADPH:protochlorophyllide oxidoreductase than wild-type plants that was in accordance with PHYA control of plant development. Dynamics of the far-red radiation dependent changes in low temperature chlorophyll fluorescence spectra for the transgenic and wild-type seedlings were consistent with the more rapid formation of photosynthetic apparatus in the seedlings with reduced PHYA.  相似文献   

13.
Protonemata of Onoclea sensibilis and Diyopteris filix-mas elongate in response to both red and far-red light. The promotion caused by far-red is larger than that caused by red light. This phenomenon differs from a typical response to phytochrome, the photoreceptor pigment immediately suggested by the activity of red and far-red light. The phenomenon has been explained by two different hypotheses, one of which holds that phytochrome is solely responsible for the response, whereas the other postulates an interaction between phytochrome and P580, a yellow-green light absorbing pigment, to account for the response. The hypothesis that phytochrome is the sole photoreceptor leads to some specific predictions concerning the shapes of the dose-response curves for light-induced protonema elongation. These predictions were tested with both continuous and short-term irradiation. In all instances saturating far-red light caused greater elongation than did saturating red light, and no dose of red light duplicated the activity of saturating far-red light. Other experiments tested the interactions of red and far-red light and the effects of different doses of yellow-green light on protonema elongation. The results of many of the experiments were not in agreement with the hypothesis that phytochrome is the sole photoreceptor, whereas they were in agreement with the assumption that filament elongation is controlled by both phytochrome and P580.  相似文献   

14.
  • 1 In 4-day-old etiolated rice seedlings, 3 mm of the coleoptile tip did mainly perceive the photostimulus to cause the phytochrome-dependent inhibition of coleoptile elongation. At this age, cell elongation occurred most in the middle portion of coleoptiles in the dark, and was reversibly controlled by a brief exposure of the tip to red and far-red light. Thus, the photoperceptive site was evidently separated from the growing zone in intact rice coleoptiles.
  • 2 The red-light-induced inhibition of coleoptile elongation was nullified by the removal of tip followed by the exogenous application of IAA. The sensitivity of thus treated coleoptiles to IAA was gradually lost during intervening darkness between the irradiation and the decapitation, and a 50% loss was obtained at ca. 6th hour at 26°C.
  • 3 Polar auxin transport from coleoptile tips was remarkably prevented at the period between, at least, 2nd and 4th hour after red irradiation, and it recovered to the level of dark control by the 6th hour. Far-red light given immediately after red irradiation reversed the yield of diffusible auxin up to that of far-red control.
  相似文献   

15.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

16.
Chicory root explants (Cichorium intybus L. var. foliosum) of two cultivars, taken before and after hydroponic forcing, were cultured in vitro in complete darkness supplemented with red and far-red light treatments. Using 5 min red light per day, the strong stem elongation occurring in complete darkness was converted to rosette formation. This reaction was reversed to stem elongation (accompanied by leaf formation) adding 15 min far-red light after the red light. Fifteen min far-red light per day alone caused the same reaction as 5 min red/15 min far-red light. Far-red light followed by red light caused rosette formation. In stems, formed under complete darkness in vitro, the presence of phytochrome was shown. No phytochrome was detected in the root fragment itself.Abbreviations R red light - FR far-red light - GA gibberellinic acid - A absorbance - FW fresh weight  相似文献   

17.
ZIV  MEIRA 《Annals of botany》1981,48(3):353-359
Darkened excized gynophores ceased to elongate after 8–10days in vitro and started to form a pod. Gynophore elongationwas inhibited to a greater extent in total darkness than underlow irradiance, while pod and embryo growth was stimulated indarkness only. Intact gynophores, enclosed in transparent vials containingglass beads, continued to elongate in both light and darkness.In light the elongating gynophores thickened as they penetratedbetween the glass beads, forming a seedless pod at the bottomof the vials. In the dark the elongating gynophores producedsmall pods in which the seeds had started to grow. Excized gynophores elongated in vitro under continuous whitelight at a rate similar to that of intact exposed gynophores.The rate of elongation in vitro, was lower under continuousblue or red-enriched light, than under white light, and wasfurther reduced under continuous far-red irradiation. Pods didnot form during any of the continuous irradiation treatmentsbut only after transfer to darkness, the largest pods formingafter continuous far-red irradiation. As little as 10 min daily exposure to red or far-red irradiancehad the same effect on gynophore elongation as continuous irradiation.Pods formed only when the daily periods of far-red irradiationwere 30 min or less. Reducing the daily exposures to 2 min decreasedthe time to onset of pod formation from 30 to 16 days. Far-redfollowing red irradiation was effective in inhibiting gynophoreelongation stimulated by red irradiation. Pod formation in red/far-redirradiation was only 50 per cent of that observed in far-redirradiation. The involvement of light in continual gynophoreelongation and in the concomitant inhibition of proembryo growthis discussed. Arachis hypogaea L., peanut, gynophore, photomorphogenesis, embryo development, pod development, proembryo  相似文献   

18.
Effects of night-interruption on the aerial tuber formationof Begonia evansiana Andr. were investigated. Among coloredlights tested, red light was most effective to reduce the photoperiodicresponse. It inhibited tuberization almost completely at lowintensities. The red lightaction was partially reversed by subsequentblue or far-red irradiation under the 12-hour daylength, andthe relation between the red and the blue or far-red lightswas reversible. No reversal, however, was observed under the8-hour daylength. The inhibitory action of red light remainedunchanged on irradiating with red, blue or far-red light beforethe night periods. 1Present address: Department of Horticulture, Purdue University,Lafayette, Indiana, USA  相似文献   

19.
The growth response of bean ( Phaseolus vulgaris L. 'Pinto') plants treated with 5 μg of brassinosteroid (BR) in the bean second-internode assay was measured in a controlled environment under 3 radiation sources: cool white fluorescent (CWF), far-red (FR) fluorescent and incandescent (INC) lamps. Growth comparisons were made under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density provided by CWF or INC lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or FR lamps. Treatment of the second internode with BR produced a sequential increase in elongation, curvature, and swelling under normal bioassay conditions (CWF lamps), as observed previously with brassins. In addition, BR induced marked splitting of the treated internode provided that ample photosynthate was available. Spectral quality had a differential effect on internodal elongation. Under CWF lamps, internodes, 6 days after BR-treatment, were 2–3 times longer than those of controls; under INC or FR lamps they were 30–60% shorter than those of controls. In all cases, BR-treatment greatly stimulated accumulation of photosynthate in the treated internode, as indicated by fresh and dry weights and stem diameter measurements. This suggests a possible mobilization role for BR in the intact plant. Brassinosteroid also partially overcame the natural inhibitory effects of CWF radiation on stem elongation.  相似文献   

20.
Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida   总被引:1,自引:1,他引:0  
D. Vince-Prue 《Planta》1977,133(2):149-156
Stems of the caulescent long-day plant, Fuchsia hybrida cv Lord Byron, showed 2 types of response to light. In one, internode length was increased by far-red irradiation given at the end of an 8 h photoperiod: the response was no greater with prolonged exposure and was less when the start of far-red was delayed. The effect of far-red was reversible by a subsequent exposure to red light. Internode length was inversely proportional to the Pfr/P ratio established before entry to darkness and there was no evidence for loss of Pfr during a 16 h dark period. The inhibitory effect of Pfr acted at a relatively late stage of internode growth. With the development of successive internodes a second response appeared in which stems lengthened following prolonged daily exposures to red or far-red light, or mixtures of the two, or to brief breaks with red or white light. In these later internodes, a short exposure to far-red near the middle of the night was not reversible by red because red alone promoted elongation at this time. Internode length increased with increase in the daily duration of light and, when light was given throughout an otherwise dark period of 16 h, with increase in illuminance to a saturation value of 200 lx from tungsten lamps. Elongation increased as a linear function of decrease in photostationary state of phytochrome down to Pfr/P0.3; however, internodes were shorter in far-red light than in 25% red/red+far-red. It was concluded that stem length is a net response to two modes of phytochrome action. An inductive effect of Pfr inhibits a late stage in internode expansion, and a phytochrome reaction which operates only in light (and may involve pigment cycling) promotes an early stage of internode development. Stem elongation is thus a function both of the daily duration of light and its red/red+far-red content. The outgrowth of axillary buds was controlled by the first type of phytochrome action only.Abbreviations and symbols FR far red light - R red light - P phytochrome - Pfr phytochrome in the far-red light absorbing form - SD 8 h short days - LDP long-day plant - SDP short-day plant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号