首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome numbers were determined for 86 Anthurium species. Fifty-one of these were newly determined with counts ranging from 2n = 24 to 66 and 30 being the most common. All known Anthurium chromosome numbers were summarized, and 43 taxonomic changes were made in the previous reports to reflect current taxonomy. In terms of somatic chromosome numbers, the numbers form four polyploid series of 20–40–60, 24–30–48–84, 28–56 and 30–60–90–ca. 124. Paleoaneuploidy, polyploidy and B-chromosomes are basic features of the genus, but subsequent recent aneuploidy is not. The exact nature of chromosome evolution in Anthurium remains to be elucidated.  相似文献   

2.
The Oncidiinae has attracted attention because of the variation it exhibits in chromosome number, n = 5–30, which is greater than the range in the rest of the Orchidaceae. The genus Psygmorchis, with n = 5 and 7, has been a particular focus of controversy, and many authors have suggested that 5 and 7 are the base numbers for the subtribe. The other taxa in the subtribe presumably evolved through hybridization and polyploidy. Other workers have found that the lowest counts correlate with derived morphological conditions and have hypothesized that these low numbers result from aneuploid reductions, while higher numbers are associated with ancestral morphologies and are not the result of polyploidy. These two hypotheses were evaluated by determining isozyme numbers for 13 enzymes in species that span the chromosomal range known for the Oncidiinae (n = 5–30). Isozyme number has been shown to be a reliable indicator of polyploidy in angiosperms because polyploids display isozyme multiplicity relative to diploids. This analysis revealed no differences among species in isozyme number for the enzymes examined. Therefore, our data reject the hypothesis that species with higher chromosome numbers are polyploid.  相似文献   

3.
The chromosome numbers of seven species ofPelargonium sect.Eumorpha have been determined from material of known wild origin, and karyotypic comparisons have been made. Within the section there is variation in basic chromosome number (x = 4, 8, 9, 11), variation in chromosome size, and two species have polyploid races. The three species with chromosome numbers based on x = 11 have the smallest chromosomes (1.0–1.5 µm); chromosomes are larger (1.0–3.0 µm) in the other species.P. elongatum has the lowest chromosome number in the genus (2n = 8).P. alchemilloides is exceptional in that it has four cytotypes, 2n = 16, 18, 34 and 36, and the form with 2n = 36 has large chromosomes (2.0–5.0 µm). Evidence from a synthesized hybrid suggests thatP. alchemilloides with 2n = 16 may be of polyploid origin. The three species based on x = 11 appear to be more closely related to species from other sections ofPelargonium that have the same basic chromosome number and small chromosome size, rather than to other species of sect.Eumorpha.  相似文献   

4.
Mitotic chromosome counts were made from field collected and subsequently cultivated plants of 61Pelargonium species from 14 sections. The 33 new results are presented. 47 of the species have a basic number of x = 11, nine spp. of x = 9 and five spp. of x = 8. 17 spp. are polyploid. In two sections species with different basic numbers occur, which is of interest for the subgeneric classification. The size of the chromosomes varies between the investigated species. Most but not all species with x = 11 have short, those with x = 8, 9 large, and only exceptionally short chromosomes. Within sections chromosome size is not always uniform. The relationship between the different basic chromosome numbers is discussed.  相似文献   

5.
Some representatives of the bivalve family Sphaeriidae are assumed to be polyploid. In this study, 11 sphaeriid species (nine of the genus Pisidium, one of Musculium, and one of Sphaerium) inhabiting central Europe were studied karyologically, 10 of them for the first time. Analysis revealed high chromosome numbers (from 140 to 240). To elucidate the origin of high chromosome numbers, DNA contents were measured by flow cytometry in 5 of the studied species and, for comparison, in S. corneum and S. nucleus, which are known to be diploid (2n=30). Species with high chromosome counts yielded very similar DNA contents that are not higher than in the related species with low diploid numbers. This finding contradicts a possible origin of these species by recent polyploidization or hybridization of related species. Chromosome complements of the investigated species with high chromosome numbers differ from those with low 2n in their small chromosome size and the high proportion of subtelo- or acrocentric chromosomes. This indicates their possible origin either by an ancient polyplodization event followed by chromosomal rearrangements or by multiple chromosome fissions.  相似文献   

6.
With the present work, we aim to provide a better understanding of chromosome evolutionary trends among southern Brazilian species of Iridoideae. Chromosome numbers and genome sizes were determined for 21 and 22 species belonging to eight genera of Tigridieae and two genera of Trimezieae, respectively. The chromosome numbers of nine species belonging to five genera are reported here for the first time. Analyses of meiotic behaviour, tetrad normality and pollen viability in 14 species revealed regular meiosis and high meiotic indexes and pollen viability (> 90%). The chromosome data obtained here and compiled from the literature were plotted onto a phylogenetic framework to identify major events of chromosome rearrangements across the phylogenetic tree of Iridoideae. Following this approach, we propose that the ancestral base chromosome number for Iridoideae is x = 8 and that polyploidy and dysploidy events have occurred throughout evolution. Despite the variation in chromosome numbers observed in Tigridieae and Trimezieae, for these two tribes our data provide support for an ancestral base number of x = 7, largely conserved in Tigridieae, but a polyploidy event may have occurred prior to the diversification of Trimezieae, giving rise to a base number of x2 = 14 (detected by maximum‐parsimony using haploid number and maximum likelihood). In Tigridieae, polyploid cytotypes were commonly observed (2x, 4x, 6x and 8x), whereas in Trimezieae, dysploidy seems to have been the most important event. This feature is reflected in the genome size, which varied greatly among species of Iridoideae, 4.2‐fold in Tigridieae and 1.5‐fold in Trimezieae. Although no clear difference was observed among the genome sizes of Tigridieae and Trimezieae, an important distinction was observed between these two tribes and Sisyrinchieae, with the latter possessing the smallest genome sizes in Iridoideae. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 27–49.  相似文献   

7.
The genus Orthophytum Beer comprises 53 species, all narrow endemics to south-eastern and north-eastern Brazil. In this study we present meiotic and mitotic chromosome numbers of 12 species of this important genus in Bromeliaceae. For six of these taxa we are reporting the first cytogenetic study. Orthophytum albopictum, O. amoenum and O. burle-marxii presented 2n = 100 chromosomes and O. hatschbachii, O. mucugense, O. vagans, O. supthutii, O. zanonii and O. ophiuroides showed 2n = 50 chromosomes. These results are consistent with the proposed basic number of x = 25 for Bromeliaceae family. In the genus Orthophytum, polyploidy seems to play an important role in chromosome evolution associated with habitat differentiation among diploid and polyploid species.  相似文献   

8.
Thomas F. Daniel 《Brittonia》2006,58(4):291-300
Meiotic chromosome numbers are reported for 12 species in eight genera of Acanthaceae from Madagascar. Chromosome numbers of 11 species are reported for the first time. Counts inMendoncia (n=19) andNeuracanthus (n=20) are the first for these genera. A new chromosome number (n=30) is reported inJusticia. Systematic implications of the chromosome counts are addressed and basic chromosome numbers for these eight genera of Malagasy Acanthaceae are discussed.  相似文献   

9.
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers (n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium (Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.  相似文献   

10.
Analyses of meiotic and mitotic chromosomes were undertaken in 16 taxa of Echinocereus belonging to 12 species and all seven taxonomic sections (sensu Taylor). Chromosome numbers are reported for the first time for eight taxa, and previously published chromosome counts are confirmed for the remaining eight. Both diploid and polyploid counts were obtained. Eleven (69%) of the taxa surveyed were diploid (2n = 22); the five varieties of E. engelmannii were polyploid (2n = 44). Overall, chromosome counts are available for 23 of the 48 proposed species (sensu Taylor). Of these, 19 (82%) are diploid, and four (18%) are polyploid. Polyploid cytotypes are most common in the primitive sections, e.g., sections Erecti and Triglochidiatus, which suggests that polyploidy is probably a derived condition in Echinocereus. Polyploid taxa range from medium to high latitudes and elevations relative to the overall distribution of the genus. Polyploidy, hybridization, and cryptic chromosomal rearrangements are thought to be the major causes of the speciation events of the genus.  相似文献   

11.
Menzel , Margaret Y. (Florida State U., Tallahassee), and James B. Pate . Chromosomes and crossing behavior of some species of Sansevieria. Amer. Jour. Bot. 47(3) : 230—238. Illus. 1960.–Approximately 20 species (28 clones) studied were diploids, tetraploids or hexaploids of the basic numbers x = 20; about 40% of the taxa were polyploid. All species had similar karyotypes, except for chromosome number. Five of 12 combinations of diploid species gave fertile F1 hybrids; 4 studied cytologically showed 20 bivalents at metaphase I. Two triploid interspecific hybrids showed high trivalent frequencies. In contrast, multivalent formation in polyploid species was variable but rather low. Morphological relationships appeared reticulate among and between diploids and polyploids and did not coincide with barriers to crossing or to hybrid fertility. The following tentative hypothesis concerning relationships in the genus is proposed: Sansevieria is monophyletic and speciation has proceeded through genetic variation and hybridization at the diploid level and by allopolyploidy (of the segmental type) ; a low level of chromosome differentiation has accompanied speciation such that complete pairing occurs in diploid hybrids, but considerable preferential pairing occurs in allopolyploids. The occurrence of both polyploid and hybrid vigor, the fertility of hybrids between species differing greatly in morphology and physiology, and the high potential for vegetative propagation make the genus a favorable subject for breeding based on interspecific hybridization.  相似文献   

12.
Basic chromosome numbers of terrestrial orchids   总被引:1,自引:0,他引:1  
The chromosome numbers of forty-one Brazilian species belonging to 11 genera of preferentially terrestrial orchids (subfamilies Cypripedioideae, Spiranthoideae, Orchidoideae, and Vanilloideae) were examined. Previous records for these subfamilies were reviewed in order to identify the ancestral chromosome numbers of terrestrial orchids. The variation observed within the subfamilies Spiranthoideae (2n=28, 36, 46, 48 and 92), and Orchidoideae (2n=42, 44, ca. 48, ca. 80, 84, and ca. 168) was similar to that previously reported in the literature. In the subfamily Spiranthoideae, some species of Prescottia (subtribe Prescottiinae) and some genera of Spiranthinae showed a bimodal karyotype with one distinctively large pair of chromosomes. The analysis of chromosome numbers of the genera in subfamilies revealed the predominance of the polyploid series 7, 14, 21, 28, 42 with a dysploid variation of ±1 in each ploidy level. These results suggest that the basic chromosome number of terrestrial orchids is x1=7 for the subfamilies Spiranthoideae and Orchidoideae, as well as other Epidendroid orchids, and that the majority of the genera are composed of palaeopolyploids.  相似文献   

13.
The chromosome numbers of nearly all species of the grass subtribesAristaveninae andAirinae from Europe and northern Africa are presented. Among theAristaveninae the genusAristavena has 2n = 14 chromosomes, whereasDeschampsia forms a polyploid series with the basic number x = 13. In the subtribeAirinae the basic number x = 7 predominates.Avenella includes a polyploid series up to dekaploidy, whilst the lowest diploid value so far known in grasses — caused by descending dysploidy — exists in the annual generaAiropsis andPeriballia with 2n = 8.From both subtribes 12 different karyotypes are described and depicted as idiograms. The basic karyotypes ofCorynephorus, Periballia andVahlodea differ from each other by different chromosome length. SAT-chromosomes in theAirinae vary somewhat. Some marker chromosomes eludicate phylogenetic relationships. Amphiplasty appears in various genera and was studied particularly in the amphidiploidAira caryophyllea. Karyological and genomatic trends are considered in relation to evolutionary strategies of annuals and perennials.The nuclear DNA content of some species has been determined cytophotometrically. In subtribeAirinae a positive correlation exists between chromosome volume, pollen diameter, and DNA content. A comparison of the duration of microsporogenesis and microgametogenesis in annual and perennial species with their nuclear DNA content has shown that a primary nucleotypic influence is not recognizable.
  相似文献   

14.
The chromosome numbers of the 24 species of sect.Pelargonium were determined from field collected and cultivated plants of known localities in S. Africa. Twelve species are diploid (2n = 22), eight tetraploid (2n = 44), one hexaploid (2n = 66), and three octoploid (2n = 88). The chromosome numbers correlate well with the proposed subdivision of sect.Pelargonium. Its chromosomes are relatively small (1.0–1.5 µm) in comparison to most of the other sections, and its diploid karyotype is considered to be primitive. The occurrence of the basic number x = 11 in this section, in other sections of the genus, and in related genera (Monsonia, Sarcocaulon) leads to the conclusion that x = 11 probably is basic for the whole genus. — The pollen meiosis, microsporogenesis and pollen fertility of the diploid species is normal, with the exception of one, possibly young taxon from the Greyton Nature Reserve. The tetraploid species could be of autoploid origin, the higher polyploids exhibit a mixed auto-alloploid nature. — The 20 diploid and tetraploid species have a relatively small distribution range, most of them occur in the SW. Cape Province of South Africa. This area may therefore be considered as the centre of origin of the genus. Three of the four high polyploid species occupy rather large areas.
Untersuchungen zur Karyologie und Mikrosporogenese der GattungPelargonium, 1.  相似文献   

15.
Raven , Peter H. (U. California, Los Angeles.), Otto T. Solbrig , Donald W. Kyhos , and Richard Snow . Chromosome numbers in Compositae. I. Astereae. Amer. Jour. Bot. 47(2) : 124—132. Illus. 1960.–Ninety-two new counts are reported for the tribe Astereae of Compositae, mostly based on determinations of meiotic material. These include the first counts reported for the genera Acamptopappus, Amphipappus, Benitoa, Chrysothamnus, Corethrogyne, Lessingia, Monoptilon, and Xanthocephalum, as well as for many species. The original counts are discussed in relation to those previously reported for the tribe; together these constitute a total of 39 genera examined cytologically out of the approximately 100 known. Because of its widespread occurrence in diverse phylogenetic lines within the tribe and the family, and because of its high degree of correlation with the woody habit, which is thought to be primitive, x=9 is regarded as the original basic number for Astereae. Within the Haplopappus alliance there is a strong secondary mode of chromosome numbers centering around x=5. The hiatus between these two modes in number is explained on the basis of ancient phylogenetic reduction in chromosome number followed by the extinction of less successful intermediate types, and is compared with similar trends that have been reported for Cichorieae. It is suggested that the family is not of polyploid origin but may have had an original diploid basic number.  相似文献   

16.
Chromosome numbers of n = 8, 12, and 16 were determined for 11 populations of Claytonia lanceolata occurring in the southwestern Rocky Mountains of Utah. No evidence of the wide infra-populational variation of chromosome numbers known in the related eastern species, C. virginica, was observed. The chromosome numbers in C. lanceolata probably evolved from a base number of x = 8. Diploids(n = 8) apparently produced tetraploids (n = 16) of putative autoploid origin. Pairing relationships, including the presence of univalents, bivalents, and trivalents, suggest the chromosome numbers of n = 12 are triploids derived from natural hybridization between diploids and tetraploids. Higher chromosome numbers previously reported in C. lanceolata from Colorado, and presumably based on x = 12, can be explained by subsequent polyploid increases in the triploids. The diploid and tetraploid populations analyzed in this study occupy different ecological habitats. The diploids occur at lower elevations along the foothills, whereas the tetraploids are restricted to higher montane and sub-alpine elevations. The triploids were discovered at intermediate elevations.  相似文献   

17.
Turner , B. L.. and R. M. King . (U. Texas, Austin.) A cytotaxonomic survey of Melampodium (Compositae-Heliantheae). Amer. Jour. Bot. 49(3): 233–26. Illus. 1962.—Chromosome counts are reported for individuals from 89 populations of Melampodium representing 26 species The genus is multibasic with x = 9, 10, 11, 12, 16 and 23. Chromosome numbers on a base of x = 10 characterize the section Melampodium while basic numbers of x = 23, 16, 12, 11 and 9 occur in the section Zarabellia. Melampodium camphoratum (n = 16) differs from all other species examined in having relatively small meiotic chromosomes. Only 6 of the 23 species are polyploid or have polyploid races. Melampodium leucanthum and M. cinereum have both diploid and tetraploid populations; the latter occur without any apparent morphological or geographical correlation and are probably autoploid in origin. A survey of the basic chromosome numbers known for other genera of the subtribe Melampodinae (12 of 22 genera) is presented. and it is suggested that x = 10 is the most probable basic number of the genus and subtribe.  相似文献   

18.
Antibody diversity, as measured by isoelectric focusing of dinitrophenol-specific antibodies, was compared in different polyploid species of the clawed toad Xenopus. Antibody heterogeneity increased with chromosome number and DNA content from Xenopus tropicalis (2n=20 chromosomes) to Xenopus ruwenzoriensis (2n=108 chromosomes). Laboratory allopolyploids made by hybridization between two species showing different antibody diversities and different chromosome numbers gave antibody patterns intermediate between the two parents. On the other hand, autopolyploid individuals showed no increase in antibody diversity, showing that increased polyploidy alone cannot be responsible for increased heterogeneity. In contrast to the increase in antibody diversity following polyploidization, the number of expressed major histocompatibility complex alleles, as measured by a mixed lymphocyte reaction, did not increase. This locus appeared to be diploid or in the process of rediploidization in all the Xenopus species studied. Selection has thus operated differentially on the polyploid immunoglobulin and major histocompatibility loci. It apparently preserved the additional heterogeneity acquired for immunoglobulins favoring the expression of an expanded antibody repertoire in polyploid species.  相似文献   

19.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

20.
Abstract Anaphalis is one of the largest genera of the Asian Gnaphalieae (Asteraceae) and is most diversified on the Qinghai‐Tibet Plateau. The chromosome numbers and karyomorphology of six species from seven populations were investigated for the first time for this region. Chromosome numbers have been newly documented for four species: Anaphalis deserti (2n = 56 = 24 median [m]+ 24 submedian [sm]+ 8 acrocentric [st]); Anaphalis plicata (2n = 56 = 26m + 30sm); Anaphalis xylorhiza (2n = 28 = 2 median point [M]+ 14m + 12sm); and Anaphalis rhododactyla (2n = 56 = 32m + 24sm). Two further counts are in agreement with the previously reported numbers, that is, Anaphalis royleana (2n = 28 = 4M + 6m + 18sm) and Anaphalis margaritacea (2n = 28 = 12m + 16sm). A new polyploid cytotype (2n = 56 = 26m + 30sm) was found in the Zougong population of A. margaritacea. Polyploidy is for the first time reported for Anaphalis, with four out of seven counts being tetraploid. Our cytological results suggest that polyploids might have played an important role in the evolution of Anaphalis on the Qinghai‐Tibet Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号