首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gabara  Barbara 《Protoplasma》1975,86(1-3):159-168
Summary It was shown that Golgi structures abundantly appearing in tapetal cells ofDelphinium Ajacis L. developing anthers, prior to meiocytes meiosis, show a fine fibrous material within their vesicles. At the time of the formation of tapetal cell wall this fibrous component, released by an exocytotic process, is incorporated into the cell wall. The membrane of dictyosomes derived vesicles participates in the development of plasma membrane. Fibrous material appears to be morphologically similar to the fibrils of tapetal cell wall; this cell wall gives a positive reaction for cellulose and pectins, as visible in the light microscope. Moreover, the fibrous and pectinase resistant compound of dictyosomes derived vesicles and the fibrils of cell wall disappear partly after cellulase digestion which proves their cellulosic character. On the other hand pectinase treatment as well as ruthenium red staining suggest associated with cellulose pectins within Golgi vesicles.  相似文献   

2.
Stigmatic hairs of the cotton flower were studied through their developmental stages up to anthesis. Stigmatic hairs invariably develop from a densely straining band of epidermal cells opposite the transmitting tissue cells. At anthesis, these are single cell structures measuring up to 300 μm long. At the 5-mm stage of stylar length (7–10 days before anthesis), some stigmatic hair cells begin to accumulate an osmiophilic substance between the plasmalemma and the cell wall, possibly synthesized in the endoplasmic reticulum. This material is apparently never secreted outside the cell wall. Immediately following this secretory phase in some stigmatic hair cells a second secretory phase starts. A dense osmiophilic substance, different in appearance from the previous phase, accumulates in the vacuoles of each hair cell. Concomitantly, dimorphism develops in the cytoplasmic densities of stigmatic hair. Some stigmatic hair cytoplasm appears very dense and shows signs of degeneration while other cytoplasm appears normal. A third secretory phase, which begins at anthesis, occurs in the normal hair cells. This phase is characterized by enhanced activity in the cytoplasm of the endoplasmic reticulum and Golgi apparatus. Large vesicles containing granular material are seen fusing with the plasmalemma. Coincident with this activity there is dissolution of the middle layers of the cell wall and the cuticle is ruptured at various points. The dense osmiophilic substance that had accumulated in the vacuole breaks down into fine granular material. Significance of these changes is discussed in relation to the pollen germination mechanism on the dry type stigma of cotton.  相似文献   

3.
SYNOPSIS. Light and electron microscope studies of the "cyst" of Besnoitia jellisoni indicate that it consists of an extracellular wall, a large, sometimes multinucleate, host cell, and an intracellular vacuole containing the parasites. The "cyst" wall has fine fibrils and small dense granules embedded in an election-lucid matrix. The wall may be formed from a secretion of the enclosed host cell. The plasma membrane of the host cell is very irregular, being modified into microvillar or pseudopodial extensions. Small vesicles and invaginations of the plasma membrane indicate mioropinocytosis. The one to several large lobular nuclei lie in a thick area of cytoplasm which is filled with rough endoplasmic reticulum and many mitochondria with lamellar cristae. The parasite-containing vacuole is limited by a vacuolar membrane which has many blebs suggesting a transfer of materials into the vacuole.
The "cyst" organisms are crescentic or piriform and are enclosed by a pellicle consisting of outer and inner membranes. Twenty-two subpellicular fibrils extend longitudinally adjacent to the inner membrane from the anterior polar ring to a posterior ring. A micropyle is situated laterally in the pelliole near the level of the nucleus. A conold and several associated paired organelles are present at the anterior end. Microuemes, more abundant in older organisms, are also present in the anterior portion of the parasite. A Golgi apparatus lies adjacent and anterior to the nucleus. One or more mitochondria with saccular cristae, ovoid glycogen bodies, free ribosomes and occasional vacuoles are also present. Organisms within the "cyst" multiply by endodyogeny.  相似文献   

4.
The spore wall of Dawsonia superba has characteristics that, in many respects, are similar to those of other mosses except for the exine, which is layered in Dawsonia. Imbibed spores have a well-developed endoplasmic reticulum with dilated cisternae that are associated with vesicles at the periphery of the cell. Ribosomes on the surface of the vesicles suggest that many vesicles originate from the endoplasmic reticulum. Two types of protein storage bodies are observed: membrane bound protein bodies with a homogeneous matrix which gradually becomes vesicular, and densely stained and non-membrane bound bodies consisting of crystalline arrays of fibrils. As in spores of higher plants, the protein reserves disappear during germination and may be converted to starch and other materials needed for development of the gametophyte.  相似文献   

5.
SYNOPSIS. An electron microscope study of Plasmodium coatneyi in the rhesus monkey supplied information on the fine structure of trophozoites, gametocytes and of the host cell. The trophozoites resemble other mammalian malaria parasites. They do not have typical protozoan mitochondria, but instead a concentric double-membraned organelle, which, it is assumed, performs mitochondrial functions. They feed on the host cell by pinocytosis, engulfing droplets of erythrocytes thru invaginations of the plasma membranes at any region of the cell or thru the cytostome. Digestion of hemoglobin takes place in small vesicles pinched off from the food vacuole proper. Gametocytes can be clearly distinguished into macro- and microgametocytes. Macrogametocytes are covered by 2 plasma membranes, the inner one appearing thicker in some places. The cytoplasm is filled with Palade's particles and has numerous vesicles of endoplasmic reticulum and toxonemes. In microgametocytes most of the inner membrane is thickened, the cytoplasm has few Palade's particles and vesicles of the endoplasmic reticulum and does not have toxonemes. Erythrocytes with trophozoites are irregularly scallop-shaped and have elevated points with knob-like protrusions covered by a double membrane. If these protrusions are sticky they might be in part responsible for clumping and arresting the schizonts and segmenters in the capillaries. The host cell contains numerous Maurer's clefts which in some instances are continuous with the membranes of the parasite suggesting that they might originate from them.  相似文献   

6.
Pedicel abscission in Hibiscus rosa-sinensis was investigated by light and electron microscopy. During the pre-abscission period endoplasmic reticulum declined somewhat, dictyosomes increased in number and apparent activity, and mitochondria maintained their numbers. The observations suggested that dictyosomal vesicles were migrating to and fusing with the plasma membrane. The enzyme acid phosphatase was associated with dictyosomes and dictyosomal saccules, with small vacuoles and invaginations of the plasma membrane, and in the paramural region between the plasma membrane and the cell wall. Our interpretation is that acid phosphatase, (and probably also the enzymes involved in cell wall dissolution) are transported via an endoplasmic reticulum-dictyosome-vesicle carrier system to the paramural regions of the cell. In more general terms, our observations support the view that the enzymes involved in the cell wall hydrolysis of abscission are synthesized within a compartmentalized, lysosomal system prior to their release and action.  相似文献   

7.
J M Westafer  R M Brown 《Cytobios》1976,15(58-59):111-138
The ultrastructure of the cotton fibres was examined after developing successful fixation methods. Fibre cells were fixed at different stages of development. In cells which were elongating and producing primary cell walls, the Golgi apparatus appeared to be directly involved in secretion and synthesis of primary wall components. In cells which were synthesizing thick secondary cell walls, evidence suggested a major role for the endoplasmic reticulum and plasma memebrane in the synthesis and secretion of secondary wall materials. The possibility of a shift from a Golgi apparatus pathway for primary wall synthesis to an endoplasmic reticulum pathway for secondary wall synthesis is discussed. Plasma membrane micro-invaginations are present only during secondary wall synthesis and may represent sites of cellulose assembly. A model for primary wall biogenesis via the Golgi apparatus is presented, and the potential of the cotton fibre as a model system for studying cellulose biogenesis in higher plants is discussed.  相似文献   

8.
The cell-wall formation in the egg of Pelvetia fastigiata (J.G. Agardh) DeToni (Fucaceae) was studied with freeze-fracture. 1. The wall is lamellated with microfibrils approximately parallel in each lamella. The average orientation of microfibrils turns about 35° in each subsequent lamella. This slow turn gives rise to bow-shaped arcs when the wall is obliquely cross fractured. 2. The organization of the fibrils in the innermost lamellae is visualized by their imprints on the plasma membrane. These imprints are the result of both turgor pressure and adhesion of fibrils to the membrane. 3. Strings of membrane particles appear on the plasma membrane shortly after fertilization. They seem to be formed by a fertilization-induced aggregation of isolated membrane particles. Later each string comes to lie under a fibril and along its imprint. Peculiar lateral rips indicate that some strings are tightly bound to a fibril and may be involved in its orientation. 4. Wall formation in Pelvetia is marked by pronounced secretory activities. Following fertilization, the fusion of cortical vesicles and other vesicles make numerous loci in the plasma membrane. In older embryos, fibril-free patches in the plasma membrane mark the position of microfibril elongation centers in the wall matrix. Prior to germination, these elongation centers and their corresponding membrane patches reach a high density at the presumptive rhizoid end.We wish dedicate this paper to R.D. Preston  相似文献   

9.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   

10.
Summary Digestion in the peritrich ciliateOphrydium versatile O.F.M. involves a complex sequence of intracytotic and exocytotic membrane fusion and recycling events. Food particulates are concentrated in the lower cytopharynx which forms a fusiform-shaped food vacuole. Upon release from the cytopharynx, this food vacuole begins to condense, concentrating the food particulates. Excess membrane is removed intracytotically. These released membranes pieces form discoidal vesicles which are recycled to the base of the cytopharynx, thus providing additional membrane for subsequent food vacuole formation. In the condensed food vacuole, digestion proceeds; hydrolytic enzymes are delivered to the food vacuole via rough endoplasmic reticulum and/or by the cup-shaped coated vesicles (CSCV). As these vesicles fuse with the food vacuole, the food vacuole enlarges, digestion proceeds and an electron-dense membrane coat appears along the luminal surface of the food vacuole. Prior to defecation, the food vacuole undergoes a final condensation; irregularly-shaped, electron dense, single-membrane bound vesicles are cut-off intracytotically from the old food vacuole. These vesicles undergo condensation and invagination to form the cup-shaped coated vesicles (CSCV) which fuse with younger food vacuoles.  相似文献   

11.
Hyphae of the fungus Pythium ultimum extend by tip growth. The use of surface markers demonstrates that cell expansion is limited to the curved portion of the hyphal apex. Growing and non-growing regions are reflected in internal organization as detected by light and electron microscopy. The young hypha consists of three regions: an apical zone, a subapical zone and a zone of vacuolation. The apical zone is characterized by an accumulation of cytoplasmic vesicles, often to the exclusion of other organelles and ribosomes. Vesicle membranes are occasionally continuous with plasma membrane. The subapical zone is non-vacuolate and rich in a variety of protoplasmic components. Dictyosomes are positioned adjacent to endoplasmic reticulum or nuclear envelope, and vesicles occur at the peripheries of dictyosomes. A pattern of secretory vesicle formation by dictyosomes is described which accounts for the formation of hyphal tip vesicles. Farther from the hyphal apex the subapical zone merges into the zone of vacuolation. As hyphae age vacuolation increases, lipid accumulations appear, and the proportional volume of cytoplasm is reduced accordingly. The findings are integrated into a general hypothesis to explain the genesis and participation of cell components involved directly in hyphal tip growth: Membrane material from the endoplasmic reticulum is transferred to dictyosome cisternae by blebbing; cisternal membranes are transformed from ER-like to plasma membrane-like during cisternal maturation; secretory vesicles released from dictyosomes migrate to the hyphal apex, fuse with the plasma membrane, and liberate their contents into the wall region. This allows a plasma membrane increase at the hyphal apex equal to the membrane surface of the incorporated vesicles as well as a contribution of the vesicle contents to surface expansion.  相似文献   

12.
This report assembles and pictorially presents observations on the timing of relatively uniform and well-defined developmental events in the cotton flower and its component parts. The first floral bud occurs on the 7–9th node approximately 35–40 days postemergence; 20–25 additional days elapse until anthesis. Floral parts are morphologically well defined by two weeks preanthesis. In about 85 % of the flowers the basal, abaxial surface of two of the three bracts contains an outer involucral nectary; occasionally, none, one, or three nectaries are found. The maximum rate of increase in floral bud length occurs during the 24 hrs preceding anthesis. Flower opening occurs at about daylight, although light is not required. Multipored pollen grains germinate in about ½ hr after deposition on the stigmatic hairs. Fertilization is accomplished, for most ovules, by the end of the first day postanthesis. Stomata are abundant, particularly at the chalazal ends of ovules. Fiber initials (epidermal cells of the ovule) begin their elongation phase on the morning of anthesis and are bounded by a thin primary wall. Areas of contrast (spots) observed through the scanning electron microscope are speculated to be organelles “seen through” the relatively amorphous fiber wall, which lacks extensive fibrillar orientation of cellulose. Fiber elongation ceases by about 24–28 days postanthesis, and by 50–70 days postanthesis fibers are mature and exhibit a thickened secondary wall and spiral twisting. Concomitant with the time of fiber maturity, the ovary wall splits and opens along locular suture lines.  相似文献   

13.
W W Thomson  K Platt-Aloia 《Cytobios》1979,25(98):105-114
Early in development, bladder cells are characterized by the absence of a vacuole or vacuoles, the presence of autophagic vesicles, and numerous, unaggregated ribosomes. With the formation and expansion of the central vacuole, the ribosomes become aggregated and elements of rough endoplasmic reticulum become apparent. This developmental transition is probably related to the production of proteins involved in ion accumulation in the vacuole. Throughout expansion, invaginations of the tonoplast and membraneous structures are associated with the vacuole. These may be indicative of a continued lytic function for this compartment. Also, dictyosomes are continuously present and dictyosome vesicles are associated with both the plasmalemma and tonoplast, which suggest that they contribute to both membrane systems during expansion of the cell and vacuole.  相似文献   

14.
Plasmalemma fine structure in isolated tobacco mesophyll protoplasts   总被引:1,自引:1,他引:0  
Summary Tobacco mesophyll protoplasts have been examined by electron microscopy during isolation procedures and after 24 hours culture in a medium known to support cell wall regeneration. During isolation the plasmalemma shows little structural differentiation apart from the formation of small vacuoles in the cytoplasm. After 24 hours of culture, several types of activity are seen at the plasmalemma surface. Microtubules, profiles of endoplasmic reticulum, electron dense granules and coated vesicles are associated with the inner surface of the membrane. External to the plasmalemma fibrillar structures occur, both as extensive networks and as individual fibrils apparently associated with the membrane itself. Techniques and criteria for electron microscopy are presented, and the results discussed in terms of plasmalemma function and the regeneration of the cell wall.  相似文献   

15.
H. Lehmann  D. Schulz 《Planta》1969,85(4):313-325
Summary In meristematic cells of the gemma of Riella helicophylla and in young bud cells from the protonema of Funaria hygrometrica the cell plate is formed by fusion of small vesicles originating from the Golgi apparatus. These spherical vesicles of about 0.1 m diameter have an electron dense centre, probably consisting of pectic substances or their precursors. The endoplasmic reticulum producing multivesicular bodies participate in cell plate formation too. Another cytoplasmic component forming the cell plate are coated vesicles, the origin of which is the Golgi apparatus and perhaps also the endoplasmic reticulum. In view of these observations the question of whether the endoplasmic reticulum or the Golgi apparatus forms the cell plate must be answered in this way: both endoplasmic reticulum and Golgi apparatus supply material for growth of the cell plate. Multivesicular bodies, coated vesicles and other small vesicles of unknown nature participate in the formation of the primary wall.

Zum Teil finanziert mit Sondermitteln des Landes Niedersachsen an Prof. Dr. M. Bopp.  相似文献   

16.
西瓜柱头乳突细胞分泌活动期间ATP酶活性超微结构定位   总被引:4,自引:1,他引:4  
研究了西瓜柱头乳突细胞ATP酶活性的超微结构定位。分泌活动旺盛的细胞中,质膜、内质网、质体的内部片层、胞间连丝以及多数大液泡的膜上面都有大量ATP酶活性反应产物,线粒体和小泡上只有少量酶活性反应产物。分泌活动停止后处于解体状态的细胞内,反应产物主要定位于液泡膜上。分泌旺盛的乳突细胞质膜具有高的ATP酶活性表明分泌物运出需要大量能量,内质网ATP酶活性强可能意味着该细胞参与分泌物合成。  相似文献   

17.
The reticulate pattern in the wall of Pediastrum boryanum emerges rapidly during wall formation following aggregation of the swarming zoospores to form the coenobium. Electron micrographs during colony formation show that microtubules, present during the motile phase and aggregation, are gone prior to wall formation and probably do not participate in wall pattern regulation. A single dictyosome lies adjacent to the nucleus and from blebs of the nuclear membrane receives vesicles at its forming face. Vesicles formed at the maturing face have not been observed to contribute to the cell wall. Electron-lucent patches occur in the plasma membrane prior to wall formation. The first indication of a reticulate pattern in wall development is the deposition on the plasma membrane of interconnected plaques of outer wall material at the corners of hexagons. The sites of the plaques may correspond to clusters of ribosomes on endoplasmic reticulum underlying the plasmalemma. Following completion of the outer wall the thicker inner wall layer is deposited and within it the reticulate pattern of ridges is soon evident in tangential sections as strips of greater electron density. It is suggested that the pattern of the wall is templated by the plasma membrane.  相似文献   

18.
D. J. Morré 《Protoplasma》1994,180(1-2):3-13
Summary Physical membrane displacement is a process common to all forms of vesicle budding as well as cell enlargement and pleomorphic shape changes. Cell-free reconstitution of membrane budding has been achieved with transitional endoplasmic reticulum fractions from both plants and animals where 50 to 70 nm transition vesicles have been observed to bud from the part-rough, part-smooth membrane elements that define transitional endoplasmic reticulum. This budding phenomenon requires ATP, is facilitated by cytosol and guanine nucleotides, and is both time- and temperature-dependent. The transitional endoplasmic reticulum buds that form when concentrated by preparative free-flow electrophoresis will attach specifically to cis Golgi apparatus membranes immobilized on nitrocellulose as an acceptor compartment. Golgi apparatus membranes derived from the trans compartment do not serve as an efficient acceptor compartment. Transfer of the vesicles once formed is rapid, nearly complete and no longer dependent upon added ATP. Transfer shows a strict temperature dependency corresponding to that of the intact cell where at temperatures of 16°C or below, vesicles form but do not attach to cis Golgi whereas at temperatures of greater than 16°C, vesicles both form and fuse. The principle ATPase of transitional endoplasmic reticulum which may be involved in the budding process has been identified, characterized and isolated. A 38 kDa cis Golgi apparatus associated protein also has been identified as a potential candidate as a docking protein. Transfer between trans Golgi apparatus and the plasma membrane also has been studied by cell-free analysis. Here, transfer has been found to be stimulated by NADH or NADH plus ascorbate. The role of NADH is unknown but the ability of plant and Golgi apparatus to oxidize NADH is inhibited by brefeldin A, a compound known to block membrane trafficking even at the level of the trans Golgi network. NADH oxidase activity of plasma membranes also has been described and is inhibited as well by brefeldin. Recent observations suggest that brefeldin A may block both the formation of vesicles at the trans Golgi apparatus as well as auxin hormone-stimulated cell elongation in plants. This once again raises the possibility of whether or not plant cell elongation is obligatorily mediated by membrane input from the Golgi apparatus. The latter seems unlikely based on two additional lines of evidence. The first is that auxin-induced cell elongation in plants shows no sharp temperature transition over the range of 4 to 24°C, whereas production of secretory vesicles from the trans Golgi apparatus appears to be largely prevented at temperatures of 18°C or less. Secondly, the sodium selective ionophore, monensin, which effectively blocks the formation of functional secretory vesicles at the trans Golgi apparatus, is also largely without effect on auxin-induced cell elongation for periods of 4 h or longer. Taken together the findings suggest that the action of brefeldin A on vesicle budding at the Golgi apparatus and cell enlargement, are not directly correlated but may represent a common action of the drug on some constituent essential to membrane displacement mechanisms.Abbreviations BFA brefeldin A - IAA indole-3-acetic acid; 2, 4-D 2, 4-dichlorophenoxyacetic acid - NSF N-ethylmaleimide-sensitive factor Much of the information summarized in this report was presented as a plenary lecture at the XV International Botanical Congress Tokyo, Yokohama, Japan, August 28–September 3, 1993.  相似文献   

19.
葡萄果实发育过程中果肉细胞超微结构的观察   总被引:20,自引:0,他引:20  
用透射电镜观察了“巨峰”葡萄(Vitis vinifera×V.labrusca)果实3个发育时期中果肉细胞超微结构的变化。果实第一次快速生长期的果肉细胞超微结构表现出物质和能量代谢旺盛的特点。缓慢生长期的果实虽外部形态平静少变,但果肉细胞超微结构表现出深刻的变化:细胞核形状特化为裂瓣状是最显著的特点;线粒体数目丰富;粗面内质网槽库膨大形成的囊泡富集,出现向液泡汇融和向质膜靠近的现象;质膜内陷;液泡膜完整。另外,原生质也出现一些降解的现象。但总体结构特点表明果肉细胞在此期处于十分活跃的物质周转代谢和信息交换过程中。果实第二次快速生长期果肉细胞超微结构表现出衰老降解的特点,但线粒体结构依然完整,数量仍然丰富,原生质膜也保持了很好的完整性,这似乎与维持第二次快速生长或成熟有关。  相似文献   

20.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号