首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Captan (N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) was shown to bind to DNA polymerase I from Escherichia coli. The ratio of [14C] captan bound to DNA pol I was 1:1 as measured by filter binding studies and sucrose gradient analysis. Preincubation of enzyme with polynucleotide prevented the binding of captan, but preincubation of enzyme with dGTP did not. Conversely, when the enzyme was preincubated with captan, neither polynucleotide nor dGTP binding was blocked. The modification of the enzyme by captan was described by an irreversible second-order rate process with a rate of 68 +/- 0.7 M-1 s-1. The interaction of captan with DNA pol I altered each of the three catalytic functions. The 3'----5' exonuclease and polymerase activities were inhibited, and the 5'----3' exonuclease activity was enhanced. In order to study the 5'----3' exonuclease activity more closely, [3H]hpBR322 (DNA-[3H]RNA hybrid) was prepared from pBR322 plasmid DNA and used as a specific substrate for 5'----3' exonuclease activity. When either DNA pol I or polynucleotide was preincubated with 100 microM captan, 5'----3' exonuclease activity exhibited a doubling of reaction rate as compared to the untreated sample. When 100 microM captan was added to the reaction in progress, 5'----3' exonuclease activity was enhanced to 150% of the control value. Collectively, these data support the hypothesis that captan acts on DNA pol I by irreversibly binding in the template-primer binding site associated with polymerase and 3'----5' exonuclease activities. It is also shown that the chemical reaction between DNA pol I and a single captan molecule proceeds through a Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Captan (N-trichloromethylthiocyclohex-4-ene-1,2-dicarboximide) was shown to inhibit RNA synthesis in vitro catalysed by Escherichia coli RNA polymerase. Incorporation of [gamma-32P]ATP and [gamma-32P]GTP was inhibited by captan to the same extent as overall RNA synthesis. The ratio of [3H]UTP incorporation to that of [gamma-32P]ATP or of [gamma-32P]GTP in control and captan-treated samples indicated that initiation was inhibited, but the length of RNA chains being synthesized was not altered by captan treatment. Limited-substrate assays in which re-initiation of RNA chains did not occur also showed that captan had no effect on the elongation reaction. Studies which measured the interaction of RNA polymerase with template DNA revealed that the binding of enzyme to DNA was inhibited by captan. Glycerol-gradient sedimentation of the captan-treated RNA polymerase indicated that the inhibition of the enzyme was irreversible and did not result in dissociation of its subunits. These data are consistent with a mechanism in which RNA polymerase activity was irreversibly altered by captan, resulting in an inability of the enzyme to bind to the template. This interaction was probably at the DNA-binding site on the polymerase and did not involve reaction of captan with the DNA template.  相似文献   

4.
Genetic effects of fungicides   总被引:2,自引:0,他引:2  
14 fungicides have been tested for genetic activity on diploid cells of the ascomycete Saccharomyces cerevisiae. The test system used was induction of: (1) mistotic gene conversion at 2 different loci; and (2) cytoplasmic respiratory-deficient mutants. 2 fungicides turned out to be strongly active in inducing mitotic gene conversion when applied as commercial preparations: Ortho-phaltan (N-(trichloromethylthio)phthalimide) and Polyram-combi (ammonia complex of zinc ethylenebis-(dithiocarbamate) and polyethylenebis(thiocarbamoyl)disulfide). Cignolin (1,8-dihydroxyanthranole), used in dermatology, did not induce mitotic gene conversion but induced cytoplasmic respiratory-deficient mutation at frequencies close to 100%. With 4 more fungicides only a week apparent induction of gene conversion could be observed: Antracol (zinc propylenebis(dithiocarbamate)), Basfungin (ammonia complex of zinc propylenebis (dithiocarbamate) and polypropylenebis(thiocarbamoyl)-disulfide), Dithane-Ultra (manganese-zinc ethylenebis(dithiocarbamate) complex) and Captan (N-(trichloromethylthio)-4-cyclohexene-1,2-dicarbaximide).  相似文献   

5.
Adenylate cyclase is the critical enzyme in the chemotactic signal relay mechanism of the slime mold amoeba, Dictyostelium discoideum. However, few studies examining the regulation of this enzyme have been performed in vitro due to the instability of enzyme activity in crude lysates. For studies presented in this communication, a membrane preparation has been isolated that exhibits a high specific activity adenylate cyclase that is stable during storage at -70 degrees C and under assay conditions at 27 degrees C. The enzyme was activated by micromolar concentrations of MnCl2. GTP and its non-hydrolyzable analog, guanosine 5'-(beta, gamma-imino)triphosphate, inhibited the enzyme non-competitively in the presence of either Mg2+ or Mn2+. However, this inhibition was more pronounced in the presence of Mn2+. Since guanylate cyclase activity in the D. discoideum membranes was less than 10% of the adenylate cyclase activity, there could not be a significant contribution by guanylate cyclase toward the production of cyclic AMP. Experiments indicate that D. discoideum adenylate cyclase was also regulated by adenosine analogs. The enzyme was inhibited by 2',5'-dideoxyadenosine and 2'-deoxyadenosine and inhibition was augmented by the presence of Mn2+. However, the inhibition was not entirely consistent with that which would be expected for the P-site of eukaryotic systems because some purine-modified adenosine analogs also inhibited the enzyme. Guanine nucleotides had no effect on the inhibition by either purine-modified or ribose-modified adenosine analogs. The binding of cyclic AMP to its receptor on the D. discoideum membranes was not affected by either MnCl2 or adenosine analogs.  相似文献   

6.
(1/2,5,6)-2-(3-Azibutylthio)-5,6-epoxy-3-cyclohexen-1-ol (1) was synthesized and was found to irreversibly inactivate beta-D-galactosidase (Escherichia coli). The inactivation was prevented by the presence of isopropyl 1-thio-beta-D-galactopyranoside (IPTG). The vinyloxirane group of 1 reacted with water and other nucleophiles, especially at higher pH values. Reaction of 1 with beta-D-galactosidase was slow enough so that a competitive-inhibition constant (Ki) of 29mM could be determined. The inhibition constant for (1,2/3,6)-6-(3-azibutylthio)-2-bromo-4-cyclohexene-1,3-diol (2), the precursor of the bireactant inhibitor 1, was 13 mM, while that of (1,3/2,4)-3-(3-azibutylthio)-5-cyclohexene-1,2,4-triol (3), the product formed when the reactant is allowed to react with water, was 23mM. After irradiation by light, beta-D-galactosidase that had initially been treated with the bireactant compound and then digested with trypsin, showed a new pattern of elution from h.p.l.c., indicating that there was reaction at two regions of the beta-D-galactosidase molecule.  相似文献   

7.
Hexachlorocyclohexanes (HCCH) are chlorinated analogs of inositol; the alpha, beta, gamma, and delta isomers of HCCH have the stereochemical configurations of (+/-)-, scyllo-, muco-, and myo-inositol, respectively. To assess their potential as specific tools for the study of agonist-stimulated phosphoinositide metabolism, we examined the effects of these four HCCH isomers on phosphatidylinositol (PI) synthase (CDP-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase), PI:inositol exchange enzyme, and several membrane-associated enzymes unrelated to inositol metabolism. In pancreas microsomes, in the presence of saturating myo-inositol, the alpha, beta, gamma, and delta isomers (4 mM) inhibited PI synthase activity by 9, 4, 22, and 69%, respectively. Half-maximal inhibition by delta-HCCH occurred at 0.25 mM. A similar pattern of HCCH inhibition was obtained using n-octylglucopyranoside-solubilized and partially purified PI synthase preparations. The inhibition by delta-HCCH was noncompetitive versus myo-inositol. The PI:inositol exchange enzyme in mouse pancreas microsomes was inhibited 90% by 1 mM delta-HCCH in the presence of 0.25% Triton X-100, but not in its absence; half-maximal inhibition occurred with 0.5 mM delta-HCCH. delta-HCCH (4 mM) also inhibited to varying extents the following enzymes: pancreas CDP-choline:1,2-diacyl-sn-glycerol cholinephosphotransferase (75%), brain and erythrocyte (Na+,K+)-ATPase (87 and 70%), brain and erythrocyte Mg2+-ATPase (38 and -5%), brain 1,2-diacyl-sn-glycerol kinase (22%), and liver glucose 6-phosphatase (16%). gamma-HCCH (4 mM) inhibited these enzymes to a lesser extent, or not at all. The order of inhibition by HCCH stereoisomers was the same as the order of their saturation level in phospholipid vesicles (delta greater than gamma greater than alpha greater than beta). This suggests that the inhibitory action is due to insertion of the compounds either into hydrophobic domains of the enzymes or into annular lipid. The results indicate that the HCCHs are not selective inhibitors of inositol metabolism.  相似文献   

8.
It is now generally accepted that protoporphyrinogen oxidase is the target-enzyme for diphenyl-ether-type herbicides. Recent studies [Camadro, J-M., Matringe M., Scalla, R. & Labbe, P. (1991) Biochem. J. 277, 17-21] have revealed that in maize, diphenyl ethers competitively inhibit protoporphyrinogen oxidase with respect to its substrate, protoporphyrinogen IX. In this study, we show that, in purified pea etioplast, [3H]acifluorfen specifically binds to a single class of high-affinity binding sites with an apparent dissociation constant of 6.2 +/- 1.3 nM and a maximum density of 29 +/- 5 nmol/g protein. [3H]Acifluorfen binding reaches equilibrium in about 1 min at 30 degrees C. Half dissociation occurs in less than 30 s, indicating that the binding is fully reversible. The specificity of [3H]acifluorfen binding to protoporphyrinogen oxidase is examined. [3H]Acifluorfen binding is inhibited by all the peroxidizing molecules tested. The phthalimide derivative, N-(4-chloro-2-fluoro-5-isopropoxy)phenyl-3,4,5,6-tetra hydrophthalimide, exerts a mixed-competitive inhibition on this binding. The effects of all these molecules on the binding of [3H]acifluorfen are tightly linked to their capacity to inhibit pea etioplast protoporphyrinogen oxidase activity. Furthermore, protoporphyrinogen IX, the substrate of the reaction catalyzed by protoporphyrinogen oxidase, was able to competitively inhibit the binding of [3H]acifluorfen. In contrast, protoporphyrin IX, the product of the reaction, did not inhibit this binding. All these results provide clear evidence that in pea etioplasts, [3H]acifluorfen exclusively binds to protoporphyrinogen oxidase, that the protoporphyrinogen oxidase inhibitors tested so far bind to the same region of the enzyme and that this region overlaps the catalytic site of the enzyme.  相似文献   

9.
Carbon 13 NMR spectra have been obtained for aqueous solutions of DL-2-(alpha-hydroxyethyl)thiamin, DL-2-(alpha-hydroxybenzyl)thiamin, DL-2-(alpha-hydroxybenzyl)oxythiamin, and related N-3 methyl and N-3 benzyl analogs. The unusually large downfield shift of the 13C resonance of C-2 of hydroxyethylthiamin suggests that this carbon bears a partial positive charge. This result stands in contrast to results of x-ray crystallographic studies of hydroxyethylthiamin, which place a partial negative charge on C-2 (Pletcher, J., and Sax, M. (1974) J. Am. Chem. Soc. 96, 155-165). A partial positive charge on C-2 helps to explain the facility of carbanion formation at the alpha carbon both enzymatically and in model systems. The rates of proton-deuteron exchange of (C-alpha)-H with solvent deuterium, and of release of aldehyde to regenerate thiamin have been measured for hydroxyethylthiamin and analogs. The differences in kinetic acidity of (C-alpha)-H and of rates of aldehyde release are rationalized in terms of differing electron-withdrawing abilities of the substituents attached to N-3, and appear not to be related to intramolecular basic catalysis of these processes by the C-4' amino group.  相似文献   

10.
N-(1-Pyrene)maleimide is a hydrophobic, sulfhydryl-directed, chemical modification probe which, at a low concentration, inhibits the capacity of lamb kidney sodium- and potassium-activated adenosine triphosphatase [Na,K)-ATPase; EC 3.6.1.3) to bind ouabain. This inhibition is partially blocked by preincubation of the enzyme with ouabagenin, an aglycone derivative which can be used as a reversible protecting ligand for the ouabain binding site. The kinetics of inhibition are not first order, suggesting that there may be more than one site of labeling which is responsible for the inhibition of ouabain binding. Although earlier work (Kirley, T. L., Lane, L. K., and Wallick, E. T. (1986) J. Biol. Chem. 261, 4525-4528) indicates that the inhibition is accompanied by a loss in the number of binding sites rather than a decrease in affinity of the sites for the ligand, other data (Scheiner-Bobis, G., Zimmerman, M., Kirch, V., and Schoner, W. (1987) Eur. J. Biochem. 165, 653-656) indicates that there is no cysteine residue located extracellularly in the ouabain binding site. By sequence analysis of alpha subunit peptides labeled by N-(1-pyrene)maleimide in the absence but not in the presence of protecting ligand, it is demonstrated in this work that there are two major sites of labeling protected by the binding of ouabagenin, Cys-367 and Cys-656. Both of these sites are located in the large cytoplasmic domain of the alpha subunit, one close to the phosphorylation site (Asp-369), and the other implicated in the binding of ATP (Cys-656). Therefore, it appears from this data that the inhibition of ouabain binding by N-(1-pyrene)maleimide is not due to modification of a site in the binding pocket for cardiac glycosides, but rather to an allosteric effect, since cardiac glycoside binding is known to be dependent on the phosphorylation state of the enzyme. The dependence of inhibition on the presence of sodium, potassium, and ATP also is consistent with this interpretation. The work reported here thus explains the apparent paradox posed by the earlier data.  相似文献   

11.
A study of the inhibition of mouse cellular DNA polymerases by poly-nucleotides and their vinyl analogs is presented. Poly(dT)-directed poly(dA) synthesis by representatives of all three classes of cellular DNA polymerase could be completely inhibited by poly(9-vinyladenine), although higher concentrations were required in the case of the gamma class enzyme. Studies on the mechanism of the inhibition using the alpha class DNA polymerase and different templates showed that the enzyme activity was inhibited in all cases where base-pairing between the vinyl polymer and the template occurred; poly(9-vinyladenine) did not interfere with the replication of templates to which it does not bind. The inhibition occurred shortly after addition of poly(9-vinyladenine) to ongoing reactions, yet the enzyme was not displaced from the template - primer complex.  相似文献   

12.
The energy-linked nicotinamide nucleotide transhydrogenase (TH) purified from bovine heart mitochondria is inhibited by the carboxyl group modifiers, N,N'-dicyclohexylcarbodiimide (DCCD) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ). With either reagent, complete activity inhibition corresponds to modification of one carboxyl group per 2 mol (monomers) of this dimeric enzyme, suggesting half-site reactivity toward DCCD and EEDQ [D. C. Phelps, and Y. Hatefi (1984) Biochemistry 23, 4475-4480; 6340-6344]. It has also been shown in the former reference that DCCD appears to modify TH at the NAD(H)-binding site. The present paper presents data suggesting that EEDQ also binds at or near the NAD(H)-binding domain of TH, but at a site not identical to that of DCCD: TH modified with and inhibited approximately 85% by EEDQ could be further labeled with [14C]DCCD to the extent of 70% of the maximum in the same time period that unmodified TH was modified by [14C]DCCD to near saturation (1 mol DCCD/TH dimer); DCCD-modified TH did not bind to NAD-agarose, while EEDQ-modified TH showed partial affinity for NAD-agarose; 5'-AMP completely protected TH against modification by DCCD, but showed only a weak protective effect against EEDQ; by contrast, NMNH, which is a TH substrate and binds to the NADH site, did not protect TH against DCCD, but completely protected the enzyme against attack by EEDQ. The results are consistent with the possibility that DCCD modifies TH where the 5'-AMP moiety of NAD(H) binds, while EEDQ modifies the enzyme where the NMN(H) moiety of NAD(H) resides.  相似文献   

13.
A fructokinase (EC 2.7.1.4) was obtained from pea (Pisum sativum L.) seeds. This enzyme, termed fructokinase (fraction IV), was specific for fructose as substrate and had little activity with glucose or mannose. Excess fructose inhibited the enzyme at the optimum pH (8.2) but not at pH 6.6. MgATP was inhibitory at pH 6.6. The apparent Michaelis-Menten constants at pH 8.2 were 0.057 mm for fructose and 0.10 mm for MgATP. Mg(2+) ions were essential for activity; Mn(2+) could partially replace Mg(2+). Fructokinase (fraction IV) had a requirement for K(+) ions which could be substantially replaced by Rb(+) or NH(4) (+) but not by Na(+). The enzyme was inhibited by MgADP. The possible significance of fructokinase (fraction IV) in plant carbohydrate metabolism is discussed.  相似文献   

14.
Nitrite reductase (EC 1.6.6.4) prepared from pea roots was found to be immunologically indistinguishable from pea leaf nitrite reductase. Comparisons of the pea root enzyme with nitrite reductase from leaf sources showed a close similarity in inhibition properties, light absorption spectrum, and electron paramagnetic resonance signals. The resemblances indicate that the root nitrite reductase is a sirohaem enzyme and that it functions in the same manner as the leaf enzyme in spite of the difference in reductant supply implicit in its location in a non-photosynthetic tissue.Abbreviations DEAE diethylaminoethyl - EPR electron paramagnetic resonance - NIR nitrite reductase - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
The proton-translocating adenosine triphosphatase (ATPase) of bovine chromaffin granules contains up to five different polypeptides. Its activity is inhibited by N-ethylmaleimide, and ATP protects the enzyme from inhibition. After treatment of membranes with N-[2-3H]ethylmaleimide, only one polypeptide is strongly radiolabelled: this is the largest (70 kDa) subunit of the proton-translocating ATPase. This subunit therefore contains the ATP-hydrolysing site. Two-dimensional electrophoresis reveals heterogeneity in this polypeptide.  相似文献   

16.
Five analogs of adenosylcobalamin modified in the adenine moiety of the Co beta ligand were synthesized and tested for coenzymic function with diol dehydrase of Klebsiella pneumoniae ATCC 8724. 1-Deaza and 3-deaza analogs of adenosylcobalamin were active as coenzyme, whereas 7-deaza and N6,N6-dimethyl derivatives and guanosylcobalamin did not show detectable coenzymic activity. 7-Deaza and N6,N6-dimethyl analogs acted as strong competitive inhibitors with respect to adenosylcobalamin. The formation of cob(II)alamin as intermediate in the catalytic reaction was spectroscopically observed with catalytically active complexes of the enzyme with 1-deaza and 3-deaza analogs in the presence of 1,2-propanediol, but not with complexes with the inactive analogs. Oxygen sensitivity of the enzyme-analog complexes suggests that the carbon-cobalt bond of 1-deaza and 3-deaza analogs becomes activated by the enzyme even in the absence of substrate. These results indicate that the importance of the nitrogen atoms in the adenine moiety of the coenzyme for manifestation of catalytic function and for activation of the carbon-cobalt bond decreases in the following order: N-7 greater than 6-NH2 greater than N-3 greater than N-1. The dissociation constant for 5'-deoxyadenosine determined by equilibrium dialysis at 37 degrees C was about 23 microM.  相似文献   

17.
18.
Diacylglycerol kinase is though to play a central role in the metabolism of diacylglycerol second messengers in agonist-stimulated cells. A series of diacylglycerol analogs were tested for their ability to act as substrates or inhibitors of diacylglycerol kinase with the goal of determining the substrate specificity of the enzyme, and of discovering inhibitors. Screening of these compounds was performed using a partially purified diacylglycerol kinase from pig brain. Modified assays for this enzyme using co-sonicated mixtures of diacylglycerol and anionic phospholipids were developed. This enzyme was found to be quite specific for sn-1,2-diacylglycerol (KM 24 microM for dioctanoyl-glycerol). Among the analogs investigated, only 1,2-dioctanoyl-2-amino-1,3-propanediol was utilized at a significant rate. Two analogs, dioctanoylethylene glycol (KI 58 microM) and 1-monooleoylglycerol (KI 91 microM), were potent inhibitors in vitro. These compounds were tested for effects on diacylglycerol formation and metabolism in thrombin-stimulated human platelets. Dioctanoylethylene glycol inhibited diacylglycerol phosphorylation in platelets (70-100% at 100 microM) leading to a longer-lived diacylglycerol signal. This compound may be a useful tool for studies of diacylglycerol kinase in other cell types. 1-Monooleoylglycerol treatment elevated diacylglycerol levels up to 4-fold in unstimulated platelets and up to 10-fold in thrombin-stimulated platelets. The implications with regard to the pathways of diacylglycerol metabolism in human platelets are discussed.  相似文献   

19.
2-Deamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) is a potent inhibitor of thymidylate synthase. Its analogue, N(alpha)-[4-[N-[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl]-N-propargylamino]phenylacetyl]-L-glutamic acid, containing p-aminophenylacetic acid residue substituting p-aminobenzoic acid residue, was synthesized. The new analogue exhibited a moderately potent thymidylate synthase inhibition, of linear mixed type vs. the cofactor, N(5,10)-methylenetetrahydrofolate. The Ki value of 0.34 microM, determined with a purified recombinant rat hepatoma enzyme, was about 30-fold higher than that reported for inhibition of thymidylate synthase from mouse leukemia L1210 cells by ICI 198583 (Hughes et al., 1990, J. Med. Chem. 33, 3060). Growth of mouse leukemia L5178Y cells was inhibited by the analogue (IC50 = 1.26 mM) 180-fold weaker than by ICI 198583 (IC50 = 6.9 microM).  相似文献   

20.
Dilauroylglycerophosphocholine (C12:0PC)-induced vesiculation of platelet plasma membranes (Kobayashi, T., Okamoto, H., Yamada, J.-I., Setaka, M. and Kwan, T. (1984) Biochim. Biophys. Acta 778, 210-218; Kobayashi, T., Yamada, J.-I., Satoh, N., Setaka, M. and Kwan, T. (1985) Biochim. Biophys. Acta 817, 307-312) was inhibited by chlorpromazine. Preincubation of platelets with chlorpromazine was required for inhibition but incorporation of chlorpromazine into C12:0PC liposomes was not necessary for it, indicating that the observed inhibition of vesiculation was mainly due to the effect of chlorpromazine on platelets and not that on liposomes. The change in platelet membrane fluidity caused by chlorpromazine was not the cause of inhibition of vesiculation. The inhibition of vesiculation by various other calmodulin antagonists was also observed. The inhibitory activities of these calmodulin antagonists and chlorpromazine correspond very well to their abilities to bind to calmodulin. N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited vesiculation but a structural analogue of it, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), had no inhibitory activity. These results suggest the involvement of calmodulin in membrane vesiculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号