首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray microprobe analyses of the secreted salts from glandsof 20 Tamarix aphylla (L.) Karst trees growing in alluvial soilsin the north western district of Victoria, Australia, show thatthe glands secrete a variety of elements including calcium,magnesium and sulphur. However, sodium, potassium and chloride,common ions reported to be secreted predominantly in other studies,are present in relatively low amounts in the secreted salts.Calcium, the major cationic element in the secretory productof the gland, was not detected in the symplasm of the secretoryand collecting cells or in the vacuoles of the collecting cells.Some evidence indicates that silicon may be secreted by theglands but further corroboratory data are required. Our resultssupport previous suggestions that the glands of Tamarix havea low level of selectivity. Large, spherical aggregates of calcium crystals were observedin the vacuoles of the mesophyll cells and quantitative X-raymicroanalysis suggested that the chemical composition of thecrystalline aggregates was CaSO4, 2H2O. The predominant elementsin the vacuolar sap were magnesium and sulphur, probably presentas MgSO4, whereas the major elements in the cytoplasm were potassium,sulphur and phosphorus. In Tamarix aphylla the calcium contentof the leaf appears to be regulated by both the secretion ofcalcium salts from the leaf and by intracellular calcificationin mesophyll cells.Copyright 1994, 1999 Academic Press X-ray microanalysis, Tamarix, salt gland, secretion, salts, ions, calcium crystals, compartmentation  相似文献   

2.
A developmental study of the accumulation of silicon and other elements in the abaxial epidermis of sugarcane (Saccharum officinarum L.) leaf blades using scanning electron microscopy and energy dispersive x-ray analysis showed that accumulation of silicon progresses at different rates in each epidermal cell type. In basal cells of two-celled microhairs and in prickles there is accumulation of silicon while the leaf is immature and still enclosed within the spindle cluster of leaves and not involved in transpiration. After transpiration begins, all epidermal cells rapidly accumulate silicon. However, there are differences in the rate of silicon accumulation and in the maximum amount of silicon accumulation among the various cell types. This may relate to differences in their physiology or structure.  相似文献   

3.
Groups of hygroscopic microcrystalline particles were found on the leaf surface of cotton, Gossypium hirsutum and were shown to be produced by glands in the epidermis. The glands were hydathode-like, about 20 μm in diameter by 25 μm long, with swollen, rounded, apices. They secreted high concentrations of magnesium and potassium and some sulphur and calcium, as indicated by X-ray microanalysis, onto the leaf surface. The proportions of elements present in gland secretions could be altered by changing the root environment of the plant. When the microcrystalline particles were removed and made up in distilled water the resulting solution had a pH of 10.2. It was established that the glands are responsible for the high pH and cation concentrations on the cotton leaf surface. The morphology and structure of the glands was investigated by light and electron microscopy and their possible function is discussed.  相似文献   

4.
By means of electron probe analysis, the effects of significant amounts of accumulation of silicon on the accumulation of calcium, potassium, magnesium, manganese, phosphorous, iron, and sodium in the silica cells of rice leaves are described. The silica cells of both the surfaces of the leaf blade and leaf sheath were studied. Silicon accumulation in the silica cells appears to decrease the amount of accumulation of potassium on both the surfaces of the leaf blade and sheath. The effect of significant amounts of silicon accumulation on the accumulation of other elements in a particular cell varies in different organs or on different surfaces of the organ of the same plant. Magnesium, manganese, iron, and phosphorus could not be detected in the adaxial epidermis of the leaf sheath and magnesium and iron in the adaxial epidermis of the leaf blade. Manganese, magnesium, and phosphorus were not detected in the abaxial epidermis of the leaf blade nor iron in the abaxial epidermis of the leaf sheath. Sodium was not revealed in either surface of the leaf blade and leaf sheath. Possible mechanisms for the effects of silicon accumulation on the accumulation of these elements in rice leaf epidermal cells are discussed.  相似文献   

5.
This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.  相似文献   

6.
The capitate-sessile and capitate-stalked glands of the glandular secretory system in Cannabis, which are interpreted as lipophilic type glandular hairs, were studied from floral bracts of pistillate plants. These glands develop a flattened multicellular disc of secretory cells, which with the extruded secretory product forms the gland head and the auxiliary cells which support the gland head. The secretory product accumulates beneath a sheath derived from separation of the outer wall surface of the cellular disc. The ultrastructure of secretory cells in pre-secretory stages is characterized by a dense ground plasm, transitory lipid bodies and fibrillar material, and well developed endoplasmic reticulum. Dictyosomes and dictyosome-derived secretory vesicles are present, but never abundant. Secretory stages of gland development are characterized by abundant mitochondria and leucoplasts and by a large vacuolar system. Production of the secretory product is associated with plastids which increase in number and structural complexity. The plastids develop a paracrystalline body which nearly fills the mature plastid. Material interpreted as a secretion appears at the surface of plastids, migrates, and accumulates along the cell surface adjoining the secretory cavity. Extrusion of the material into the secretory cavity occurs directly through the plasma membrane-cell wall barrier.  相似文献   

7.
The present study describes the anatomical structure of calyx and leaf glands in Galphimia brasiliensis and analyzes the mechanism of secretion. The glands are marginal and suprabasal, cup-shaped, sessile, and scarcely visible with the naked eye. Light microscopy reveals the following features: a thin, smooth cuticle; unistratified secretory cells; subglandular parenchyma; and vascular bundle supply composed of phloem and xylem with abundant druses of calcium oxalate. Transmission electron microscopy reveals the presence of secretory cells with conspicuous nuclei, dense cytoplasm, lipid droplets, numerous vesicles, mitochondria, Golgi, rough endoplasmic reticulum (RER), and elongated plastids with osmiophilic contents. The secretion reaches the apoplastic space and accumulates beneath the cuticle. Finally, the viscous, translucent exudate is eliminated by mechanical rupture of the cuticle. Histochemical analysis confirms that lipids are the main constituent. Small amounts of polysaccharides were also identified.  相似文献   

8.
Halophytes complete their life cycles in saline environments. The recretohalophyte Limonium bicolor has evolved a specialized salt secretory structure,the salt gland, which excretes Na+to avoid salt damage. Typical L. bicolor salt glands consist of 16 cells with four fluorescent foci and four secretory pores. Here, we describe a special type of salt gland at the base of the L. bicolor leaf petiole named bracelet salt glands due to their beaded-bracelet-like shape of blue auto-fluoresc...  相似文献   

9.
Mineralized stalks of the chryophyte Anthophysa ve-getans (O. F. Müller) Stein were examined by electron microscopy, and the composition of the stalks was determined by energy dispersive x-ray microanalysis. Colonies grown in water from a local lake (Dowdy Lake) had mineralized stalks that were colorless and composed mainly of spherules of calcium phosphate up to 0.7 μm in diameter. The addition of 0.1 mM MnCl2 to the culture medium resulted in deeply orange-brown stalks mineralized primarily with minute granules of a manganese compound. The addition of 0.1 mM FeCl3 to the culture media resulted in light yellow stalks mineralized mainly with small granules of an iron compound. The addition of 0.1 mM MgCl2 or KCl resulted in stalks that were similar in appearance and composition to the colonies grown in culture medium alone. These results show that the composition of the mineralized stalks of A. vegetans is dependent on the elements present in the culture medium. This is also the first time that calcium phosphate has been reported as a mineralization product in the chrysophytes.  相似文献   

10.
Some salt-tolerant plants belonging to the Poaceae excrete salts to the leaf surfaces under salinity conditions, and the bicellular glands on their leaf surfaces have been postulated to excrete salt. However, clear evidence of the salt excretion from these bicellular salt glands has not been shown at the electron-microscope level because soluble attachments on the leaf surface are completely removed during specimen preparation for conventional electron microscopy. To determine whether the bicellular salt glands actually excrete salt, we examined the leaves of Rhodes grass (Chloris gayana Kunth), Poaceae, by scanning electron microscopy in a low-vacuum mode, which allows to observe specimens without preparation procedures. Unwashed and washed fresh leaf surfaces were examined, and excreted materials on the leaf surface were analyzed by energy dispersive X-ray spectrometry. On the unwashed leaf surfaces, globular materials were observed arranged along the same lines as the macrohairs of the leaf surface, but the salt glands were hardly observed. After leaf surfaces were washed, the globular materials disappeared, and the salt glands appeared localized at the same lines as the macrohairs. Density of the globular materials observed under unwashed conditions and the salt glands under washed conditions was equal. These findings indicate that the glands indeed excrete globular materials just above their cap cells. The excreted materials contained sodium, chlorine, and potassium, and the counts of sodium and chlorine was increased greatly with NaCl treatment of the plants. After removing the excreted materials, most of the cap cells of the salt glands were smooth globular, without ruptures in their cuticle. We conclude that the leaves of Rhodes grass indeed excrete salt from the bicellular salt glands, but without rupturing the cuticle on the cap cell.  相似文献   

11.
Morphological changes occurring in the oviduct and epithelial cells of the lizards Crotaphytus collaris and Eumeces obsoletus during the natural reproductive cycle were examined and quantified. Additionally, development of the eggshell at different stages of gravidity was described. The anterior uterus of each species has a distinct glandular type which differs between species: in E. obsoletus, the glands are tubular and in C. collaris, branched saccular. The branched saccular glands in the anterior uterus of C. collaris produce collagen-like material that forms the fibers of the shell membranes. However, fibers from the eggshell of E. obsoletus did not stain for collagen. The shell of both species is composed of a multilayered inner boundary covered externally by fibers of varying thickness. Initial layers are composed of thick fibers all lying along the same general axis. Outer layers of fibers are progressively thinner and an external surface layer composed of glycosaminoglycans (GAGs) is also present. In C. collaris, calcium, which is deposited in relatively small amounts on the shell surface, appears to be secreted by the epithelium of the anterior uterus. The nonciliated secretory epithelial cells covering the villi-like folds of the posterior infundibulum secrete GAGs. Epithelial cell height of the infundibular villi is greatest during early gravidity. A functional relationship may exist between luteal activity and oviductal secretory activity because the activity of the glandular epithelium varied as gravidity progressed.  相似文献   

12.
Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae) have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs.Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses.We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics of their secretions are important adaptations to a terrestrial lifestyle.  相似文献   

13.
Limited work has been done on the accumulation characterization of Ca2+ in aerobic granules that are cultivated in a continuous-flow bioreactor. In this work, the contribution of Ca2+ to the biogranulation in a continuous flow airlift fluidized bed (CAFB) reactor has been studied. The spatial distribution and form of calcium in the granules were investigated by scanning electron microscopy-mapping, energy dispersive X-ray and X-ray diffraction (XRD). Calcium was located throughout the Ca-rich granules, rather than accumulating in the center of the granules of the sequencing batch reactor. Furthermore, CaCO3 was detected as the main crystalline mineral form of the calcium. Calcium augmentation of the inflow promoted the accumulation of magnesium in the granules in the CAFB. The magnesium was presented as Ca7Mg2P6O24 according to XRD analyses.  相似文献   

14.
Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using “wet” chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM–EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM–EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM–EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.  相似文献   

15.
Loss of viability of a nuclear polyhedrosis virus (NPV) of Spodoptera littoralis was shown to occur on cotton leaves but not on cabbage leaves or on semi-synthetic insect diet. The inactivation was rapid, occurred in the dark and required contact between the cotton leaf surface and the polyhedral inclusion bodies (PIBs). It was shown that the products of the cotton leaf glands, which exude a crystalline material onto the leaf surface, could account for the rapid inactivation observed. Inactivation did not involve loss of virus polyhedral inclusion bodies. The use of EDTA or a low pH buffer in the NPV suspension reduced the inactivation which suggested that the loss of activity was due to the presence of calcium and magnesium in the cotton gland exudate.  相似文献   

16.
The influence of silicon treatment on the levels of calcium and magnesium in blood serum and tissues was studied in rats. The concentrations of both elements were estimated in samples of sera and tissues of rats receiving per os a soluble, inorganic silicon compound—sodium metasilicate nonahydrate (Na2SiO3·9H2O (REACHIM, USSR)), dissolved in the animals' drinking water. A decrease of magnesium concentration in serum was observed with accompanying elevation of registered calcemia. Moreover, a reduction of tissue calcium levels was found with a simultaneous increase of magnesium tissue pool. The results provide evidence for silicon involvement in mineral metabolism. It could result in a modification of pathological processes concerning bone tissue.  相似文献   

17.
Social insects have numerous exocrine glands, but these organs are understudied in termites compared to hymenopterans. The tarsomere and distal tibial glands of the termites Heterotermes tenuis, Coptotermes gestroi and Silvestritermes euamignathus were investigated by scanning and transmission electron microscopy. Pore plates are visible in scanning micrographs on the distal tibial surfaces and on the ventral surface of the first and second tarsomeres of workers of H. tenuis and C. gestroi. In contrast, workers of S. euamignathus have isolated pores spread throughout the ventral surfaces of the first, second, and third tarsomeres and the distal tibia. In all three species each pore corresponds to the opening of a class-3 secretory unit, composed of one secretory and one canal cell. Clusters of class-3 glandular cells are arranged side by side underneath the cuticle. The main characteristics of these exocrine glands include their presence on all the legs and the electron-lucent secretion in the secretory cells. Possible functions of these glands are discussed.  相似文献   

18.
1. A close correlation has been obtained between high resolution electron microscopy and low-angle x-ray diffraction studies of the myelin sheath of frog and rat peripheral and central nerves. Extensive studies were performed by application of both techniques to the same specimens, prepared for examination by OsO4 or KMnO4 fixation, and embedding either in methacrylate or in gelatin employing a new procedure. Controlled physical and chemical modifications of the myelin sheath prior to fixation were also investigated. 2. A correspondence was established between the layer spacings observed in electron micrographs and the fundamental radial repeating unit indicated by the low-angle x-ray diffraction patterns. The variations in relative intensities of the low-angle x-ray reflections could be related to the radial density distributions seen in the electron micrographs. 3. An analysis of the preparation procedures revealed that OsO4 fixation introduces a greater shrinkage of the layer spacings and more pronounced changes in the density distribution within the layers than KMnO4 fixation. The effects of methacrylate and gelatin embedding are described, and their relative merits considered in relation to the preservation of myelin structure by OsO4 fixation. 4. The experimental modifications introduced by freezing and thawing of fresh whole nerve are described, particularly the enhancement of the intermediate lines and the dissociation of the layer components in the myelin sheath. A characteristic collapsing of the radial period of the sheath is observed after subjecting fresh nerve trunks to prolonged and intense ultracentrifugation. 5. Controlled extraction of fresh nerve with acetone at 0°C., which preferentially removes cholesterol, produces characteristic, differentiated modifications of the myelin sheath structure. Electron microscopy reveals several types of modifications within a single preparation, including both expanded and collapsed layer systems, and internal rearrangements of the layer components. Alcohol extraction leads to a more extensive structural breakdown, but in certain areas collapsed layer systems can still be observed. The components of the lipide extracts could be identified by means of x-ray diffraction. These modifications emphasize the importance of cholesterol in the myelin structure, and disclose a resistance of the dense osmiophilic lines to lipide solvents. 6. The significance of these structures is discussed in relation to present concepts of the molecular organization of myelin. The available evidence is consistent with the suggestion that the primary site of osmium deposition is at the lipoprotein interfaces and that the light bands probably represent regions occupied by lipide chains. The electron microscope and x-ray diffraction data also indicate the possibility of a regular organization within the plane of the layers, probably involving units of 60 to 80 A. The myelin sheath is regarded as a favourable cell membrane model for detailed analysis by combined application of x-ray diffraction and electron microscopy.  相似文献   

19.
Heavy metal and radionuclide contamination presents a significant environmental problem worldwide. Precipitation of heavy metals on membranes of cells that secrete phosphate has been shown to be an effective method of reducing the volume of these wastes, thus reducing the cost of disposal. A consortium of organisms, some of which secrete large quantities of phosphate, was enriched in a laboratory-scale sequencing batch reactor performing Enhanced Biological Phosphorus Removal, a treatment process widely used for removing phosphorus. Organisms collected after the aerobic phase of this process secreted phosphate and precipitated greater than 98% of the uranyl from a 1.5 mM uranyl nitrate solution when supplemented with an organic acid as a carbon source under anaerobic conditions. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and fluorescence spectroscopy were used to identify the precipitate as membrane-associated uranyl phosphate, UO2HPO4.  相似文献   

20.
The electron microscopy of human eccrine sweat glands has been studied before and after stimulation by pilocarpine iontophoresis. The identity of the dark and clear cells in the secretory segment as defined by Montagna et al. (23) was determined by studying serial sections, thin for electron microscopy and thick for light microscopy. Cells with numerous apical secretory vacuoles are termed mucoid (dark) cells, since these vacuoles stain positively for acid mucopolysaccharide. Clear cells are intimately associated with intercellular canaliculi. The "cuticular border" of surface cells of the duct is a condensation of tonofilaments and granules. Numerous mitochondria are concentrated in basal cells of the duct. The presence of mucoid cells in the secretory segment may bear on the interpretation of the pathologic findings in the disease cystic fibrosis of the pancreas, and suggests that this disease may be due to a basic disorder of mucopolysaccharide production. The possible roles of the various cellular components in the elaboration of sweat are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号