首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary wood of three species of Callixylon of Lower Mississippian age, preserved by three different modes (fusinization, silicification, and phosphatization), have been studied and characterized in detail. Problems of interpretation at the SEM level of permineralized woods, both containing (silicified wood of Callixylon erianum) and essentially lacking (phosphatized wood of C. arnoldii) original organic cell wall material, are analyzed and discussed. In particular, it is concluded that the flat to curved surfaces showing no evidence of apertures, observed in bordered pit pairs, commonly represent pit membrane surfaces. It is accepted, however, that some concave surfaces might be the mineral accretion surfaces of incomplete pit cavity casts as proposed by Leo and Barghoorn (1976). Regions between groups of pits, previously interpreted as crassulae, may be artifacts of preservation. The fusinized wood has the general appearance of charcoal, but unlike commercially produced charcoal provides evidence of its original microfibrillar structure. The origin of fusain in the fossil record is discussed, and it is concluded that it probably had several origins, including forest fire. Since charcoal can be produced naturally in the absence of O2 (Brown and Davis, 1973), the suggestion that fusain (charcoal) in the geologic column provides a basis for “assessing oxygen levels in paleoatmospheres” (Cope and Chaloner, 1980) is not supported. Natural sites of fusain production in the absence of O2 are regions of vulcanism and organic sediments inhabited by anaerobic microorganisms. A circular pattern of crystal orientation in the pit borders of C. arnoldii is interpreted to represent the original microfibrillar pattern. Pit apertures in C. arnoldii are shown to be circular to slightly elliptical. Interpretive evidence of heterogeneous pit membranes in C. arnoldii suggests but does not prove the presence of a torus. The distinctive central region in some pit membranes of the fusinized wood of Callixylon sp. might represent accumulations of waste metabolites. It is argued that a torus would be highly adaptive in large pits with circular apertures.  相似文献   

2.
The elastic properties of pit membranes are reported to have important implications in understanding air‐seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never‐dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force–displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse.  相似文献   

3.
Wood is composed of various types of cells and each type of cell has different structural and functional properties. However, the temporal and spatial diversities of cell wall components in the cell wall between different cell types are rarely understood. To extend our understanding of distributional diversities of cell wall components among cells, we investigated the immunolabeling of mannans (O-acetyl-galactoglucomannans, GGMs) and xylans (arabino-4-O-methylglucuronoxylans, AGXs) in ray cells and pits. The labeling of GGMs and AGXs was temporally different in ray cells. GGM labeling began to be detected in ray cells at early stages of S1 formation in tracheids, whereas AGX labeling began to be detected in ray cells at the S2 formation stage in tracheids. The occurrence of GGM and AGX labeling in ray cells was also temporally different from that of tracheids. AGX labeling began to be detected much later in ray cells than in tracheids. GGM labeling also began to be detected in ray cells either slightly earlier or later than in tracheids. In pits, GGM labeling was detected in bordered and cross-field pit membranes at early stages of pit formation, but not observed in mature pits, indicating that enzymes capable of GGM degradation may be involved in pit membrane formation. In contrast to GGMs, AGXs were not detected in pit membranes during the entire developmental process of bordered and cross-field pits. AGXs showed structural and depositional variations in pit borders depending on the developmental stage of bordered and cross-field pits.  相似文献   

4.
The pit membrane in bordered pits of conifer tracheids is characterized by a porous margo and central thickening (torus), which is traditionally considered to function as an impermeable safety valve against air-seeding. However, electron microscopy based on 33 conifer species, including five families and 19 genera, reveals that pores occur in the torus of 13 of the species studied. The pores have a plasmodesmatal origin with an average diameter of 51 nm and grouped arrangement. Evidence for embolism spreading via pores in tori is supported by the pore sizes, which correspond relatively well with the pressure inducing cavitation. Predictions based on earlier correlations between pit structure and cavitation resistance were only weakly supported for species with punctured tori. Moreover, species with punctured tori are significantly less resistant to cavitation than species with non-punctured tori. Nevertheless, absolute pore diameters must be treated with caution and correlations between theoretical and measured air-seeding pressures are weak. Because most pores appear not to traverse the torus but are limited to one torus pad, only complete pores would trigger air-seeding. Embolism spreading through a leaky torus is not universal across gymnosperms and unlikely to represent the only air-seeding mechanism.  相似文献   

5.
Resistance to water‐stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air‐seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from ?2.9 to ?11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation‐resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary‐seeding as the most likely mode of air‐seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers.  相似文献   

6.
Summary The development of pit-pairs between differentiating xylem cells has been examined by transmission electron microscopy in young shoots ofSorbus torminalis. In some vessel-to-tracheid pits, as well as in previously studied intertracheid pits, a thickening of the pit membrane containing branched plasmodesmata was observed. A secondary wall-like cap was deposited over the thickening prior to cytoplasmic autolysis; some plasmodesmata, parallel to the plane of section, appeared to perforate the cap. At the end of the cell maturation stage, the central part of the primary wall thickening was hydrolysed, while the cap, including plasmodesmata remnants, appeared unaltered. In half-bordered pit-pairs between a parenchyma cell and a vessel or a tracheid, similar structures could be observed beside the conducting elements. When the vessel or tracheid matured, sealing of the pit membrane plasmodesmata resulted from the formation of a protective layer on the parenchyma-side rather than from the deposition of a cap on the conducting cell-side. These observations provide the first information on the presence of symplasmic connections in pits between differentiating vessels and neighbouring xylem cells. InS. torminalis, xylem differentiation is probably highly coordinated within a symplasmic domain; the persistence of such connections may account for the lack of specialization ofSorbus wood.  相似文献   

7.
Summary Isolated goldfish retinae were incubated in NaHCO3-reduced solutions, a treatment known to lower intracellular pH and to decrease gap-junction-mediated coupling between cells. The morphology of the gap junctions of horizontal cells examined by means of freezefracture replicas and ultrathin sections displays alterations after such treatment. The gap-junctional particles aggregate into dense clusters or crystalline arrays, whereas controls (pH 7.5) display a loose arrangement of particles. Incubation in NaHCO3-reduced solution leads to the appearance, in ultrathin sections, of prominent, electron-dense material beneath the gap-junctional membranes. Both effects, the increasing density of particles and the appearance of electron-dense material, are reversible. The application of dopamine, which uncouples horizontal cells, and its antagonist haloperidol produce less clear-cut effects on particle density in vitro.  相似文献   

8.
A study was conducted on the variation in growth, biomass, juvenile wood anatomy, and needle morphology of Pinus halepensis Mill. from three Spanish regions of provenance characterized by environmental differences, without the influence of the site factor. Seeds collected from two progenies in each region were planted in a single plot, and the trees were felled at the age of 7 years. The results showed significant differences between provenances, as well as the genetic or environmental influence on the traits analyzed. Trees adapted to moderate summer drought conditions (Inland Catalonia region) are primarily characterized by higher average values for height, diameter, biomass, cell wall thickness, inter-tracheid wall strength, pit membrane diameter, torus diameter, bordered pit aperture diameter, and ray tracheid abundance in comparison with trees adapted to severe summer drought conditions (Southern region and Balearic Islands region). The greater structural requirements of trees from the Inland Catalonia region, subjected to higher weight and wind loads, resulted in thick cell walls. Moreover, the large pits and more abundant ray tracheids in trees from this provenance would allow more efficient water transport and greater water storage capacity, respectively. The differences found between provenances suggest the adaptive nature of the anatomy of this species, which demonstrates the importance of the region of provenance when choosing reproduction material for reforestation.  相似文献   

9.
Vesselless wood represents a rare phenomenon within the angiosperms, characterizing Amborellaceae, Trochodendraceae and Winteraceae. Anatomical observations of bordered pits and their pit membranes based on light, scanning and transmission electron microscopy (SEM and TEM) are required to understand functional questions surrounding vesselless angiosperms and the potential occurrence of cryptic vessels. Interconduit pit membranes in 11 vesselless species showed a similar ultrastructure as mesophytic vessel‐bearing angiosperms, with a mean thickness of 245 nm (± 53, SD; n = six species). Shrunken, damaged and aspirated pit membranes, which were 52% thinner than pit membranes in fresh samples (n = four species), occurred in all dried‐and‐rehydrated samples, and in fresh latewood of Tetracentron sinense and Trochodendron aralioides. SEM demonstrated that shrunken pit membranes showed artificially enlarged, > 100 nm wide pores. Moreover, perfusion experiments with stem segments of Drimys winteri showed that 20 and 50 nm colloidal gold particles only passed through 2 cm long dried‐and‐rehydrated segments, but not through similar sized fresh ones. These results indicate that pit membrane shrinkage is irreversible and associated with a considerable increase in pore size. Moreover, our findings suggest that pit membrane damage, which may occur in planta, could explain earlier records of vessels in vesselless angiosperms.  相似文献   

10.
K. Uehara  T. Hogetsu 《Protoplasma》1993,172(2-4):145-153
Summary The arrangement of cortical microtubules during the development of the secondary wall and bordered pits in the tracheids ofTaxus was examined by immunofluorescence and electron microscopy. The cambial region of radial longitudinal sections of developing young shoots (2–3 years old) contains cells at various stages of differentiation from cambial cells to tracheids. At the early stage of formation of bordered pits, circular bands of microtubules were seen to be associated with the inner edge of the border of the developing pit. In other regions than the pit secondary wall of uniform thickness was laid down, and obliquely oriented cortical microtubules ran parallel to one another. These cortical microtubules also covered the surface of the border of the developing pit on the side facing the center of the cell. As the border of the pit developed, a circular band of MTs remained associated with the inner edge of border, suggesting that the MTs were involved in the formation of the rim of the bordered pit, extending the initial border thickening, which consisted of concentrically oriented cellulose microfibrils. After completion of the formation of the bordered pit, helical thickenings became apparent. The obliquely oriented microtubules were organized in bands parallel to one another, being superimposed on the helical thickenings. The involvement of MTs in the formation of bordered pits and helical thickening is discussed.  相似文献   

11.
Stems, incl. rhizomes, and roots of 42 species ofValerianaceae were investigated in order to reveal the occurrence, structure and distribution of xylem transfer cells. Within nodes and internodes their frequency, distribution and gradients of development are similar to other families. — Within the secondary xylem of some species transfer cells can develop from cambial derivates, inValeriana tuberosa andPatrinia villosa even from pith cells. Within the turnip ofV. tuberosa transfer cells are very frequent and well developed. Here, after degradation of the cell-wall ingrowths they can be redifferentiated into storage cells which usually contain starch grains (Hüllenstärkekörner). In the transitional zone between stem and root of some predominantly herbaceous taxa transfer cells are often very frequent and form large protuberances before they degrade and lignify. SEM observations inValeriana decussata show that the cell-wall ingrowths are degradated at the beginning of lignification with the exception of brush-like protuberances remaining in the half-bordered pit-pairs. During the subsequent process of lignification the simple pits of a wall adjacent to a vessel can be transformed into corresponding pit-pairs. In this case the residues of the protuberances within the pit chamber can be transformed into incrustations similar to the vestures of bordered pits described byBailey (1933). Structural similarities between the brush-like protuberances in the half-bordered pits of theValeriana transfer cells and the ingrowths found inLauraceae (Castro 1982, 1985) are evident. Supposedly, all the cambial derivatives inValerianaceae can develop protuberances at least within their pits. Thus, it appears possible to interpret the vestures of the bordered pits as rudimentary protuberances, and to suggest that they have a specific function in the selective transport of solutes.
Transferzellen im Xylem derValerianaceae
  相似文献   

12.
Modelling the hydrodynamic resistance of bordered pits   总被引:1,自引:0,他引:1  
Previous studies of the hydrodynamics of plant stems have shown that resistance to flow through bordered pits on the side walls of tracheids makes up a significant proportion of their total resistance, and that this proportion increases with tracheid diameter. This suggests a possible reason why tracheids with a diameter above around 100 microm have failed to evolve. This possibility has been investigated by obtaining an estimate for the resistance of a single pit, and incorporating it into analytical models of tracheid resistance and wood resistivity. The hydrodynamic resistance of the bordered pits of Tsuga canadensis was investigated using large-scale physical models. The importance of individual components of the pit were investigated by comparing the resistance of models with different pore sizes in their pit membrane, and with or without the torus and border. The estimate for the resistance of a real bordered pit was 1.70x10(15) Pa s m(-3). Resistance of pits varied with morphology as might be predicted; the resistance was inversely proportional to the pore size to the power of 0.715; removing the torus reduced resistance by 28%, while removal of the torus and border together reduced it by 72%. It was estimated that in a 'typical tracheid' pit resistance should account for 29% of the total. Incorporating the results into the model for the resistivity of wood showed that resistivity should fall as tracheid diameter increases. However, to minimize resistance wider tracheids would also need to be proportionally much longer. It is suggested that the diameter of tracheids in conifers is limited by upper limits to cell length or cell volume. This limitation is avoided by angiosperms because they can digest away the ends of their cells to produce long, wide vessels composed of many short cells.  相似文献   

13.
Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine‐scale bordered pit features in water‐conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non‐hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non‐hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood‐specific hydraulic conductivity, mass‐based net assimilation rate, stomatal conductance (gs), intercellular CO2 concentration (Ci) and the petiole vessel lumen diameters (Dv), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood‐ and leaf‐specific hydraulic conductivity and Dv. Pit density was positively correlated with gs, Ci and Dv, but negatively with intrinsic leaf water‐use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.  相似文献   

14.
Psilotum nudum (L.) Beauv. (Psilotopsida) has a simple, vascularized sporophyte with a dichotomously branching aerial axis. The number and lumen diameters of tracheids in the actinostele decrease in each subsequent branch, leading to an approximate halving of the measured hydraulic conductance (Kh) from segment to segment. To understand how the anatomy of P. nudum affects Kh, a biophysical model based on the Hagen-Poiseuille relation was developed that incorporated lumen diameter, tracheid taper, pit cavities, and pit membranes. Using a technique previously developed for ferns, pit membrane resistance was determined by measuring water flow before and after dissolving the pit membranes with cellulase. Measured Kh was in good agreement with Kh calculated with the model after excluding thick-walled late metaxylem tracheids that dye studies showed were nonconducting. Model simulations showed that the approximately 40% overlap observed for tracheids of P. nudum was in the range leading to greatest conductance and that Kh decreased to half for 20% overlap. The model also showed that the pit membranes account for an increasing percentage of total resistance to water flow as the lumen diameter increases. Thus, the removal of such primary wall material and the evolutionary origin of vessels would have substantially increased Kh.  相似文献   

15.
Scanning electron microscopy (SEM) photographs of thick sections from liquid‐preserved stems of Victoria cruziana and Euryale ferox show accretions of coarse fibrils on pit membranes of tracheids. The first‐deposited fibrils are randomly orientated; on top of them (facing the tracheid lumina) are axially orientated coarse fibrils. The two systems are interconnected. Axially orientated fibrils were more extensively observed in Euryale than in Victoria and tips of fibrils in Euryale extend over the pit apertures onto secondary wall surfaces. Tracheid–parenchyma interfaces bear rudimentary coarse fibrils on the tracheid side. End walls of Victoria tracheids have highly porose pit membranes, thinner and less complex than those of the lateral intertracheid walls. The structures reported in Victoria and Euryale are consistent with those concurrently reported for stems of other Nymphaeaceae. Although also present in Cabombaceae, the coarse fibrils are otherwise not reported for stems of angiosperms and are not yet reported in roots of any species. Pit membrane remnants in perforation plates of various woody dicotyledons represent a nonhomologous phenomenon. The accretions of coarse fibrils in stem tracheids of Nymphaeaceae do not appear to enhance conduction, although they do contain porosities interconnecting tracheids. Removal of pit membrane remnants from perforation plates of primitive dicotyledon woods by hydrolysis does, on the contrary, suggest conduction enhancement. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 52–57.  相似文献   

16.
Icacinoxylon pittiense, a new species of angiospermous wood from the Lower Cretaceous Cedar Mountain Formation of Utah is described and compared with similar fossil and modem woods. It is distinguished from other species of Icacinoxylon by its thick-walled fiber-tracheids with their walls making up at least 50% of the total diameter of the cells, conspicuous bordered pits with obliquely crossing extended apertures on both the tangential and radial walls of its fiber-tracheids, scalariform perforation plates with as few as four or greater than 30 bars, transitional opposite to scalariform pitting on its vessel walls, thick-walled ray cells, and distinct sheath or border cells in its rays. Icacinoxylon pittiense is the first species of this genus to be reported from Cretaceous sediments. This wood is of special interest because very few angiosperm woods have been reported from lower Cretaceous strata.  相似文献   

17.
The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs, and physiological data were from published values. Consistent with observations, calculations showed that earlywood tracheids were more resistant to embolism than latewood tracheids, mainly from earlywood having stretchier pit membranes that can distend and cover the pit aperture. Air seeding that occurs in earlywood appears to happen through gaps between the torus edge and pit border, as shown by the similar calculated pressures required to stretch the membrane over the pit aperture and to cause embolism. Although bordered pit functioning was correlated with tracheid hydraulic diameter, pit pore size and above all pit aperture constrained conductivity the most. From roots to branches and from the trunk base to higher on the trunk, hydraulic resistance of the earlywood pit membrane increased significantly because of a decrease in the size of the pit aperture and size and number of margo pores. Moreover, overall wood conductivity decreased, in part due to lower pit conductivity and a decrease in size and frequency of pits. Structural and functional constraints leading to the trade-off of efficiency against safety of water transport were also demonstrated at the individual pit level, with a positive correlation between pit membrane resistance on an area basis and the pressure differential required to cause membrane stretching, a characteristic that is essential for pit aspiration.  相似文献   

18.
Bisalputra, T., and T. E. Weier. (U. California, Davis.) The cell wall of Scenedesmus quadricauda. Amer. Jour. Bot. 50(10): 1011–1019. Illus. 1963.—Fine structure of the cell wall of Scenedesmus quadricauda fixed in both KMnO4 and osmium tetroxide is described. The cell wall consists of 3 layers: the inner cellulosic layer which delimits individual cells; the outer pectic layer which binds the cells of the coenobium together; and a thin middle layer, bounded by membranes on either side, which is electron-dense in osmium-fixed material but of medium electron density in KMnO4. The structure of the outer pectic layer is similar in both fixatives; it consists of a hexagonal network of electron-dense material on the surface, and a system of tubules or “props” which radiate out from the middle layer of the wall to support the net. The pectic layer appears in the daughter coenobia before their liberation from the parent colony.  相似文献   

19.
BACKGROUND AND AIMS: Intervascular pit membranes were examined within Ericales to determine the distribution and structure of torus-like thickenings. METHODS: Forty-nine species representing 12 families of the order Ericales were investigated using light, scanning and transmission electron microscopy. They were compared with four species of Oleaceae to determine the true nature of the thickenings. KEY RESULTS: Pit membranes with torus-like thickenings were observed in seven species of Ericaceae and were found to be amorphous, plasmodesmata-associated structures with an irregular distribution. These pseudo-tori show major differences compared with true tori with respect to their distribution and ultrastructure. Genuine tori, which are strongly correlated with round pit apertures in narrow tracheary elements, were found in two species of Osmanthus (Oleaceae). CONCLUSIONS: The pseudo-tori found in some Ericaceae are considered to be similar to pit membrane thickenings previously recorded in Rosaceae. While true tori appear to be functionally significant in terms of efficiency and safety of water transport, the possible function of pseudo-tori could be associated with the role of plasmodesmata during differentiation of tracheids, fibre-tracheids or narrow vessels.  相似文献   

20.
Edwards , George A., and Mercedes R. Edwards . (Div. Labs, and Research, N.Y.S. Dept. of Health, Albany.) The intracellular membranes of Blastomyces dermatitidis. Amer. Jour. Bot. 47 (8): 622–632. Illus. 1960.—The yeast cells of Blastomyces dermatitidis have been studied in thin sections with the electron microscope. The cell is multinucleate, and the nuclei are frequently interconnected by their outer limiting membranes. The cell is bordered by a cell wall and the plasma membrane, which may be seen in direct continuity with the nuclear envelope. The cytoplasm contains numerous mitochondria, many profiles of the endoplasmic reticulum, and few multivesicular bodies. The membranes of all the constant cellular components are interconnected. Mitochondria appear to be formed from any of several membrane systems. The micromorphology of the cell suggests efficiency of communication and cytoplasmic mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号