首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS Eighty-four purine and pyrimidine analogs were evaluated for growth inhibition of Tetrahymena pyriformis. The most toxic were 2-fluoroadenine, 2-fluoroadenosine, 6-methylpurine, a series of 5-fluoropyrimidines, and a series of adenine derivatives substituted in the 9-position. 2-Fluoroadenine was metabolized to the ribonucleoside triphosphate and was incorporated into nucleic acids; its inhibition of growth was reversed by high levels of adenine. 6-Methylthiopurine ribonucleoside was phosphorylated, but only to the monophosphate derivative. Contrasting T. pyriformis with mammalian cells gave clues to the mechanism of action of some of the agents. 6-Mercaptopurine, 6-methylthiopurine ribonucleoside, and 6-thioguanine, all potent pseudofeedback inhibitors of de novo purine biosynthesis in mammalian cells, are not toxic to T. pyriformis, which lacks the de novo purine pathway; this implies that inhibition of de novo purine biosynthesis by them underlies their growth inhibition of mammalian cells.  相似文献   

2.
The newly-formed leaves on plantlets differentiated from shoot bud cultures of Betula pendula, when excised and grown on a fresh medium produced callus from the margins or regenerated leafy shoots, roots and plantlets. After 4 weeks, upon transfer to murashige and Skoog (MS) medium supplemented with 3-indoleacetic acid (IAA) + 6-(4-hydroxy-3-methyl-trans-2-enyl)aminopurine (zeatin) + 6-aminopurine (adenine), 15–20 plantlets were produced from each explant. Likewise, the roots also showed meristematic activity at several sites, and produced nodulated callus on MS + α-naphthaleneacetic acid (NAA) + 6-(3-methyl-2-butenyl-amino)purine (2-iP) + adenine, and ultimately differentiated plantlets. Anatomical studies showed that initiation of callus takes place by meristematic activity in epidermal cells of leaves, and cortical cells of roots. Cytological investigations revealed no change in chromosomal complement.  相似文献   

3.
Cells of Chlamydomonas reinhardi Dangeard were synchronouslygrown under a 12 hr light-12 hr dark regime. The algal cellcycle under these conditions starts with a light-induced reaction(s)at the beginning of the light period and ends, after a definiteperiod of time (23–24 hr at 25°C), in zoospore liberation.When cells were exposed to 6-methyl purine for short periods(0.5–2.5 hr) at different times during the early and intermediatephases of the cell cycle, it exerted, as an analogue of adenine,two different effects on the revolution of the cell cycle: onea "lengthening" effect seen at its low concentrations in whichthe length of the cell cycle was somewhat prolonged, the othera "return to start" effect at higher concentrations. In thelatter a short exposure of cells to 6-methyl purine broughtthem to the starting point of the cell cycle concurrent withthe abortion of the cycle in process. When 6-methyl purine wasapplied during the later phase of about 1/4 the length of thecell cycle, it casued no effect. Control of the revolution ofthe algal cell cycle by an "adenine-involving reaction(s)" disturbedby this adenine analogue is discussed. (Received September 1, 1975; )  相似文献   

4.
Poly(9-vinylpurine), a polynucleotide analog with purine residues unable to form complete base-pairs, inhibited replication of murine leukemia virus (MLV) without changing the growth rate of the host cells. Poly(9-vinylpurine) was also an inhibitor of in vitro activity of MLV DNA polymerase. The amount required for 50% inhibition depended upon the kind of template-primer that was used in the assay. But inhibition was not specific to the virus DNA polymerase, since the cellular DNA polymerases α and γ were also inhibited. Poly(9-vinylpurine) was capable of complex formation with poly(rA). However an analog, with an N,N-dimethylamino group substituted in the 6 position of the purine ring, did not form a complex with poly(rA) and did not inhibit virus replication.  相似文献   

5.
5′-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous purine compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented at during growth of B. cereus in the presence of AMP, the concerted action of 5′-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B cereus acts as a translocase of the ribose moiety of ionsine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

6.
The requirements for purine nucleotide synthesis, the effects of purine analogues, and the metabolism of adenine in the bacterium Helicobacter pylori were investigated employing cell culture techniques and one-dimensional NMR spectroscopy. Bacterial cells grew and proliferated in media lacking preformed purines, indicating that H. pylori can synthesize purine nucleotides de novo to meet its requirements. Blocking of this pathway in the absence of sufficient preformed purines for salvage nucleotide synthesis led to cell death. Analogues of purine nucleobases and nucleosides taken up by the cells were cytotoxic, suggesting that salvage routes could be exploited for therapy. Adenine or hypoxanthine were able to substitute for catalase in supporting cell growth and proliferation, suggesting a role for these bases in maintaining the microaerophilic conditions essentially required by the bacterium. Received: 23 May 1997 / Accepted: 17 July 1997  相似文献   

7.
Regulation of de novo purine biosynthesis in Chinese hamster cells   总被引:1,自引:0,他引:1  
Regulation of de novo purine biosynthesis was examined in two Chinese hamster cell lines, CHO and V79. De novo purine biosynthesis is inhibited at low concentrations of adenine. The mechanism of inhibition was studied using the RNA and protein synthesis inhibitors actinomycin D, cycloheximide, and azacytidine. Although all three inhibitors rapidly inhibited de novo purine biosynthesis in vivo, neither adenine nor the RNA and protein synthesis inhibitors could be found to have an effect in vitro on either phosphoribosylpyrophosphate (PRPP) synthetase or amido phosphoribosyltransferase, the first enzymes of the de novo pathway. However, in the presence of actinomycin D, cycloheximide, and azacytidine, there was a 50% or greater reduction in PRPP concentrations. This reduction in PRPP levels is correlated with a 2-fold increase in purine nucleotides in the acid-soluble pool. It is proposed that in the presence of the metabolic inhibitors there is an increase in nucleotide pools due to degradation of RNA, with a resulting feedback inhibition on de novo purine biosynthesis. In contrast to a previous report (Martin, D. W., Jr., and Owen, N. T. (1972) J. Biol. Chem. 247, 5477-5485), we could find no evidence for a repressor type mechanism in these cells.  相似文献   

8.
Guanosine metabolism in Neurospora crassa   总被引:1,自引:0,他引:1  
Two aspects of guanosine metabolism in Neurospora have been investigated. (a) The inability of adenine mutants (blocked prior to IMP synthesis) to use guanosine as a nutritional supplement; and (b) the inhibitory effect of guanosine on the utilization of hypoxanthine as a purine source for growth by these mutants. Studies on the utilization of guanosine indicated that the proportion of adenine derived from guanosine may be limiting for the growth of adenine mutants. In wild type, adenine is produced through the biosynthetic pathway when grown in the presence of guanosine. The amount of adenine produced through the de novo biosynthesis in wild type increases with increasing concentrations of guanosine in the medium. However, the total purine synthesis does not increase. Guanosine inhibits the uptake of hypoxanthine severely. In addition, guanosine and its nucleotide derivatives also inhibit the hypoxanthine phosphoribosyltransferase activity, at the same time stimulating the adenine phosphoribosyltransferase activity. Guanosine's effects on the uptake of hypoxanthine and its conversion to the nucleotide form may be the reasons why guanosine inhibits the utilization of hypoxanthine but not adenine by these mutants.  相似文献   

9.
A simple method for the synthesis of various purine arabinosides from purine bases and uracil arabinoside by microbial transarabinosylation is described. A wet cell paste of Enterobacter aerogenes AJ 11125 showed a wide substrate specificity range for purine bases. Not only naturally occurring purine bases such as adenine and hypoxanthine but also unnatural bases such as 6-thioguanine and 2-chlorohypoxanthine were catalyzed to give the corresponding purine arabinosides. The enzymatically synthesized purine arabinosides were isolated from the reaction mixtures and identified by physicochemical means. The biological activities of the compounds were investigated and it was found that thioguanine arabinoside and 2-methyladenine arabinoside have potent activity against Hela cells, and their ED50 were 10.5 and 21.5 μg/ml, respectively.  相似文献   

10.
Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non‐permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine‐containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long‐term survival of Leishmania in a purine‐scarce environment.  相似文献   

11.
Two human lymphoblastic cell lines, deficient in methylthioadenosine phosphorylase (MTAP) activity, were found to have increased rates of de novo purine synthesis. These MTAP cell lines were K562, an undifferentiated leukemic line and CCRF-CEM, a leukemic line of T-cell origin. Another T-cell line, CCRF-HSB-2 was found to be deficient in activity. However, this line did not demonstrate elevated rates of purine synthesis. Purine metabolism in the above cell cultures was compared with MTAP+ human B-cell lines and two human T-cell lines (MOLT-3 and MOLT-4). In all the MTAP+ cell lines, the rate of de novo purine synthesis was inhibited by the presence of methylthioadenosine in the assay medium (10 μM concentration produced more than 90% inhibition). However, purine synthesis in the MTAP cells was resistant to inhibition by methylthioadenosine. Adenine in the assay medium inhibited de novo purine synthesis in MTAP+ and MTAP cells to a similar degree. This inhibition was dose dependent and was elicited by concentrations similar to those of methylthioadenosine. Growth of the cell lines in culture was not affected by either methylthioadenosine or adenine at the concentrations which produced inhibition of purine synthesis. These results suggest that purine synthesis in MTAP+ cells is inhibited by adenine formed from the phosphorolytic cleavage of methylthioadenosine by methylthioadenosine phosphorylase.  相似文献   

12.
Tobacco cells were grown in artificial media with defined amino acid composition. In such media, the addition of methionine or norleucine caused increases in the specific activity of the catechol oxidase, while in the normal medium norleucine depressed it. The differences of the effect of norleucine on synthesis of catechol oxidase and on cell growth is demonstrated, as is the reversibility of the norleucine effect by methionine. The incorporation of norleucine into a purified enzyme fraction is shown. The change in the electrophoretic patterns of the enzyme during growth in the absence and presence of norleucine was followed. [14C]-Leucine incorporation by control and norleucine treated cells was examined and it was shown that protein synthesis in the norleucine treated cells was markedly changed and total incorporation reduced. Incorporation into soluble protein was reduced, but increased in the 20 000 g precipitate fraction. Nevertheless use of autoradiography indicates that some catechol oxidase is apparently synthesised in the presence of norleucine.  相似文献   

13.
Miller , J. H. (Yale U., New Haven, Conn.) The effect of auxin and guanine on cell expansion and cell division in the gametophyte of the fern, Onoclea sensibilis. Amer. Jour. Bot. 48(9): 816–819. Illus. 1961.—Auxin and guanine promote cell expansion in 0. sensibilis gametophytes. The optimum concentration of auxin for total expansion is 10−-5 M, but the optimum for elongation is 10−-6 M. Above this concentration the cells expanded isodiametrically. Guanine is active at higher concentrations than auxin. Increasing concentrations of auxin progressively inhibit red light-induced cell division, while guanine has no effect on cell division. Neither kinetin nor adenine promotes cell expansion or cell division.  相似文献   

14.
A study has been made of the growth responses to purine and pyrimidine metabolites shown by sixteen ultraviolet-induced adenine requiring mutants ofCandida albicans blocked at early stages in purine biosynthesis. The salient findings establish that, inC. albicans, (1) the pathway for the conversion of adenine to guanine is not reversible, (2) exogenous nucleotides are not utilized, and the purine and pyrimidine components of exogenous nucleosides must be converted to the free base form before utilization and (3) cytosine and guanine competitively inhibit different steps in the utilization of exogenous adenine.  相似文献   

15.
T S Chan 《Cell》1978,14(3):523-530
To delineate the pathogenesis of the immunodeficiency disease associated with purine nucleoside phosphorylase deficiency, the effects of guanosine, inosine, deoxyguanosine and deoxyinosine on the growth of a mouse T cell lymphoma line in culture were studied. Of these four purine nucleosides, deoxyguanosine was the most toxic. At 5 x 10?6 to 10?5 M, deoxyguanosine inhibits growth of the lymphoma cells; higher concentrations result in complete killing. The cytotoxic effects of this deoxynucleoside can be prevented by simultaneous addition to culture medium of deoxycytidine and hypoxanthine. Determination of nucleotide pools in deoxyguanosine-treated cells shows a marked reduction of the deoxycytidine triphosphate and the adenine ribonucleotide pools, accompanied by a sharp rise in the guanosine deoxyribonucleotide and a smaller increase in the corresponding ribonucleotide pools.Deoxyguanosine as well as guanosine, inosine and deoxyinosine were known to accumulate to relatively high levels in the plasma of a patient with T cell immunodeficiency disease associated with purine nucleoside phosphorylase deficiency. The other three purine nucleosides are much less toxic than deoxyguanosine. Thus it is very probable that the patient's clinical manifestations of T lymphocytopenia are the consequence of deoxyguanosine inhibition of lymphoid cell proliferation, resulting from depletion of deoxycytidine triphosphate and adenine nucleotides.  相似文献   

16.
NK cell proliferation is suppressed in some patients with cancer by unknown mechanisms. Because purine metabolites released into the extracellular space during cell lysis may affect cell function, we hypothesized that these metabolites could serve as feedback regulators of NK cell proliferation. Sorted NK (CD56+/CD3-) cells were incubated with IL-2 (1000 U/ml) in a 4-day thymidine uptake assay with or without 10-10,000 microM of nucleotides. Adenine nucleotides inhibited NK cell proliferation, with ATP = ADP > 5'-adenylylimidodiphosphate > AMP = adenosine; ADP-ribose and nicotinamide adenine dinucleotide, but not nicotinamide or UTP, caused a dose-dependent suppression of thymidine uptake. A total of 100 microM ATP, a concentration that induced a maximal (80%) inhibition of thymidine uptake, did not inhibit cytotoxic activity against K562 targets. Because NK cells retained the ability to lyse K562 targets 4 days after exposure to 500 microM ATP or 1000 microM adenosine, inhibition of thymidine uptake was not due to cell death. Incubation of NK cells with dibutyryl cAMP and forskolin also suppressed thymidine uptake. Cholera toxin and pertussis toxin suppressed NK cell proliferation. Pertussis toxin did not block the adenine nucleotide effects. Further, ATP, but not adenosine or other nucleotides, markedly increased intracellular cAMP in a dose-dependent manner. The ATP-induced increase in cAMP was specific to cytolytic cells, because CD19+ B cells and CD4+ T cells did not increase their intracellular cAMP. These studies demonstrate that NK proliferation is regulated through purine receptors by adenine nucleotides, which may play a role in decreased NK cell activity. The response to adenine nucleotides is lineage-specific.  相似文献   

17.
Summary. Abaxial epidermal cells of developing faba bean (Vicia faba) cotyledons are modified to a transfer cell morphology and function. In contrast, the adaxial epidermal cells do not form transfer cells but can be induced to do so when excised cotyledons are cultured on an agar medium. The first fenestrated layer of wall ingrowths is apparent within 24 h of cotyledon exposure to culture medium. The time course of wall ingrowth formation was examined further. By 2 h following cotyledon excision, a 350 nm thick wall was deposited evenly over the outer periclinal walls of adaxial epidermal cells and densities of cytoplasmic vesicles increased. After 3 h in culture, 10% of epidermal cells contained small projections of wall material on their outer periclinal walls. Thereafter, this percentage rose sharply and reached a maximum of 90% by 15 h. Continuous culture of cotyledons on a medium containing 6-methyl purine (an inhibitor of RNA synthesis) completely blocked wall ingrowth formation. In contrast, if exposure to 6-methyl purine was delayed for 1 h at the start of the culture period, the adaxial epidermal cells were found to contain small wall ingrowths. Treating cotyledons for 1 h with 6-methyl purine at 15 h following cotyledon excision halted further wall ingrowth development. We conclude that transfer cell induction is rapid and that signalling and early events leading to wall ingrowth formation depend upon gene expression. In addition, these gene products have a high turnover rate. Correspondence and reprints: School of Environmental and Life Sciences, Biology Building, University of Newcastle, Callaghan, NSW 2308, Australia.  相似文献   

18.
The RNA recognition motif (RRM) binds to single-stranded RNA target sites of diverse sequences and structures. A conserved mode of base recognition by the RRM involves the simultaneous formation of a network of hydrogen bonds with the base functional groups and a stacking interaction between the base and a highly conserved aromatic amino acid. We have investigated the energetic contribution of the functional groups involved in the recognition of an essential adenine, A6, in stem–loop 2 of U1 snRNA by the N-terminal RRM of the U1A protein. Previously, we found that elimination of individual hydrogen bond donors and acceptors on A6 destabilized the complex by 0.8–1.9 kcal/mol, while mutation of the aromatic amino acid (Phe56) that stacks with A6 to Ala destabilized the complex by 5.5 kcal/mol. Here we continue to probe the contribution of A6 to complex stability through mutation of both the RNA and protein. We have removed two hydrogen-bonding functional groups by introducing a U1A mutation, Ser91Ala, and replacing A6 with tubercidin, purine, or 1-deazaadenine. We find that the complex is destabilized an additional 1.2–2.6 kcal/mol by the elimination of the second hydrogen bond donor or acceptor. Surprisingly, deletion of all of the functional groups involved in hydrogen bonds with the U1A protein by substituting adenine with 4-methylindole reduced the binding free energy by only 2.0 kcal/mol. Experiments with U1A proteins containing mutations of Phe56 suggested that improved stacking interactions due to the greater hydrophobicity of 4-methylindole than adenine may be partly responsible for the small destabilization of the complex upon substitution of 4-methylindole for A6. The data imply that hydrophobic interactions can compensate energetically for the disruption of the complex hydrogen-bonding network between nucleotide and protein.  相似文献   

19.
Cytotoxic effect(s) of N6-cycloalkylated adenine and adenosine derivatives, upon the viability of mouse hepatoma cells, were studied in vitro. N6-Cyclopropyl- and N6-cyclobutyladenine and adenosine derivatives (33 micrograms/ml; 24-48 h) exerted significant cytotoxic effects upon the cells. N6-Cyclopentyl- and N6-cyclohexyladenines exerted similar effects under different experimental conditions (133-166 micrograms/ml; 48-72 h), while no significant cytotoxic effect(s) were observed with the corresponding adenosine derivatives under these conditions. Observed physical changes in the treated cells included cell elongation, short stubby filaments, wide intracellular spaces and ruptured cell membranes. N6-Cycloalkylated nucleosides were usually more cytotoxic than the cycloalkylated bases.  相似文献   

20.
The effects of manganese ion (Mn2+) and adenine on the accumulation of 5′ inosinic acid (IMP) by Brevibacterium ammoniagenes KY 13102, were examined. Adenine regulated the accumulation of IMP in the presence of limiting amounts of Mn2+ and the accumulation of hypoxanthine (Hx) in the presence of excessive amounts of the ion. Manganese ion markedly affected IMP accumulations, cell growth and cellular morphology. These biological changes caused by Mn2+ are related to changes in the syntheses of macromolecules. The cells cultivated under limitation of Mn2+ showed abnormally elongated and irregular forms irrespective of adenine levels and had smaller nucleotide pools than those of the cells in the presence of excessive Mn2+. The Mn2+ limited cells showed ability to accumulate IMP directly in the cell suspension but the Mn2+ excessive cells did not accumulated IMP but Hx. These results indicated that adenine and Mn2+ affected the IMP accumulation independently each other and adenine acted as a feedback regulator on de novo synthesis of purine nucleotide and limitation of Mn2+ caused morphological changes, resulting in changes of permeability of the cells. The fatty acid contents of the Mn2+ limited cells were higher than those of the Mn2+ excessive cells and the ratio of unsaturated fatty acid to saturated one was higher in the former cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号