首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colchicine treatment of sorghum seedlings of both F1 hybrids and of their pollen parent lines resulted in complex mutant plants the majority of which were true-breeding. Recessive irradiation-induced characters originally homozygous in the pollen parent lines and heterozygous in the hybrids did not appear in any of the mutants or their self progenies. Recessive normal characters apparently absent in the pollen parent lines and heterozygous in the hybrids appeared in some mutants and bred true in their self progenies. These results are consistent with the hypothesis that colchicine-induced mutants arise through chromosome substitution (Sanders and Franzke, 1964, Jour. Arnold Arb. 45: 36). Since sorghums with 2n = 20 are believed to be of polyploid derivation, interchangeable chromosomes carrying different alleles could be present in true-breeding lines. There is evidence that diploid mutant complements may result from reduction of polyploid nuclei. Since the proportion of true-breeding mutants was as large from the highly heterozygous seedlings as from the homozygous seedlings, segregation of chromosomes during reduction must be primarily by c-pairs which later separate as the homologues of a new cell. Plants from such cells would be equivalent to doubled haploids. With colchicine treatment, true-breeding lines have been obtained from multiple hybrids in a single step rather than after many generations of selling.  相似文献   

2.
Sanders , Mary E., and Clifford J. Franzke . (South Dakota State Coll.. Brookings.) Cytological studies of nontrue-breeding mutants in sorghum obtained after colchicine treatment. Amer. Jour. Bot. 49(9): 990–996. Illus. 1962.—Although pollen mother cells of nontrue-breeding mutant plants obtained after colchicine treatment of sorghum seedlings, line ‘Experimental 3,’ showed normal chromosome behavior (10 bivalents) at phases of meiosis I, some abnormalities were found at corresponding stages in first- and second-generation self-progeny plants of some of them. The most frequent chromosome irregularities were an increase over ‘Experimental 3’ in number of cells containing univalents, and mixoploid tissues with tetraploid and diploid cells. The higher polyploid groups (6n, 8n, 10n) also present in 2 plants might be related to their male-sterile condition rather than being an indication of the chromosome complement. Abnormalities in progenies suggest that some of the mutants might have been chimeras in which abnormalities were missed and raise the question whether chromosome changes are involved in the formation of the mutants in spite of the preponderance of normal diploid cells with 10 bivalents during prophase and metaphase of meiosis I. This could occur if sorghum contains a genetic mechanism which promotes bivalent rather than multivalent pairing. That such might be a possibility is indicated by the large numbers of bivalents and small numbers of multivalents found in polyploid cells or groups.  相似文献   

3.
秋水仙碱诱导重瓣大岩桐(Sinningia speciosa)多倍体的研究   总被引:24,自引:0,他引:24  
以重瓣大岩桐叶片为外植体,经秋水仙碱处理得到大量的多倍体植株。在培养基中加入秋水仙碱20mg L^-1处理一周,可使重瓣大岩桐的诱变率达到62.5%,对再生植株进行形态学观察表明,多倍体植株比二倍体的茎粗壮,叶片增大,加厚。细胞学鉴定四倍体染色体数为2n=4x=52,而二倍体的染色体数为2n=26。  相似文献   

4.
To study the effect of sucrose on the sink-source relationship in in vitro-grown plants, Cistus incanus seedlings and plantlets were grown horizontally in a two-compartment Petri dish (split dish), with the root system in one compartment and the shoot in the other. Shoots and roots were exposed to different sucrose concentrations (0–30 g dm−3), two irradiance levels (25 and 160 μmol m−2s−1) and the presence or absence of a minimum medium containing minerals and vitamins (M medium). Root and shoot biomass of the seedlings was enhanced by an increase in irradiance when the growth medium was not supplemented with sucrose indicating the role of photosynthesis in biomass production. When sucrose was added to either organ growth was enhanced as well. In the presence of sucrose in the root compartment, sucrose applied to the shoot compartment enhanced growth of both organs under low irradiance, while under high irradiance, sucrose had no further additive effect. In the absence of sucrose in the root compartment, the enhancement of root biomass by sucrose added to the shoot compartment was lower under high irradiance than under low irradiance. The response of Cistus plantlets to sucrose and irradiance differed from that of seedlings, probably reflecting a greater susceptibility of the plantlets to sucrose feedback inhibition on photosynthesis and biomass accumulation. The decrease in root and shoot growth when M medium was added to the shoot compartment and the relatively better growth of these organs when the roots were supplied with minerals and the shoot with sucrose, indicate that growth of the two organs in our experimental set-up was regulated by opposing fluxes of C and nutrients.  相似文献   

5.
Magnetic field (MF) can have different effects on plant metabolism depending on its application style, intensity, and environmental conditions. This study reports the effects of different intensities of static MF (4 or 7 mT) on seed germination and seedling growth of bean or wheat seeds in different media having 0, 2, 6, and 10 atmosphere (atm) osmotic pressure prepared with sucrose or salt. The germination percentages of the treated seeds were compared with untreated seeds germinated in different osmotic pressure during 7 days of incubation. The application of both MFs promoted the germination ratios of bean and wheat seeds, regardless of increasing osmotic pressure of sucrose or salt. Growth data measured on the 7th day showed that the treated plants grew faster than control. After 7 days of incubation, the mean length of treated seedlings was statistically higher than control plants in all the media. The greatest germination and growth rates in both plants were from the test groups exposed to 7 mT MF. Strikingly, effects of static MF on germination and growth increased positively with increasing osmotic pressure or salt stress compared to their respective controls. On the other hand, MF application caused an increase in dry biomass accumulation of root and shoots of both seedlings; however, this effect was found statistically important in all the conditions for wheat but not for bean, in general. Bioelectromagnetics 31:120–129, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Dayan FE 《Planta》2006,224(2):339-346
Sorgoleone is the major component of the hydrophobic root exudate of sorghum [Sorghum bicolor (L.) Moench]. The presence of this allelochemical is intrinsically linked to root growth and the development of mature root hairs. However, factors modulating root formation and the biosynthesis of sorgoleone are not well known. Sorgoleone production was independent of early stages of plant development. The optimum temperature for root growth and sorgoleone production was 30°C. Seedling development and sorgoleone levels were greatly reduced at temperatures below 25°C and above 35°C. The level of sorgoleone was also sensitive to light, being reduced by nearly 50% upon exposure to blue light (470 nm) and by 23% with red light (670 nm). Applying mechanical pressure over developing seedlings stimulated root formation but did not affect the biosynthesis of this lipid benzoquinone. Sorgoleone production did not change in seedlings exposed to plant defense elicitors. On the other hand, sorgoleone levels increased in plants treated with a crude extract of velvetleaf (Abutilon theophrasti Medik.) root. This stimulation was not associated with increased osmotic stress, since decreases in water potential (Ψw) by increasing solute concentrations with sorbitol reduces sorgoleone production. Sorgoleone production appears to be constitutively expressed in young developing sorghum plants. Other than with temperature, changes in the environmental factors had either no effect or caused a reduction in sorgoleone levels. However, the stimulation observed with velvetleaf root crude extract suggests that sorghum seedlings may respond to the presence of other plants by releasing more of this allelochemical.  相似文献   

7.
Chromosome doubling plays an important role in generating new species of flowering plants. However, reproductive incompatibilities between newly formed tetraploid plants and their diploid progenitors are expected to create a significant barrier to the persistence and establishment of neopolyploid populations. Ecological differentiation can reduce this barrier via prezygotic isolation arising from spatial separation. Alternatively, superior viability or fecundity of neotetraploid plants might compensate for the reproductive cost of incompatible pollen from diploid neighbors. The performance of plants of both cytotypes can be assessed in their respective habitats through reciprocal transplants, although such experiments have not been used previously in the study of tetraploid speciation. We used a series of seed and seedling transplant experiments to assess ecological differentiation and competitive ability during early establishment phases for tetraploid and diploid forms of the snow buttercup (Ranunculus adoneus). At two sites, seeds from diploids and tetraploids had similar germination probabilities. Tetraploid snow buttercup seedlings had a significant growth advantage in a controlled environment chamber experiment. However, in the field diploid and tetraploid buttercup seedlings did not differ consistently in survival or growth, nor did the two cytotypes show reciprocal advantages in performance, as expected if ecological differentiation has occurred. At the seed and seedling stages, neither niche differentiation nor tetraploid competitive superiority appears sufficient to explain neotetraploid success in the presence of their diploid progenitors.  相似文献   

8.
采用秋水仙碱创制优质、抗热同源四倍体不结球白菜   总被引:6,自引:0,他引:6  
以不同浓度秋水仙素处理二倍体不结球白菜(Brassica campestrisssp.chinensisM ak ino)子叶生长点,对变异株进行了形态解剖学、农艺学、细胞学及营养品质鉴定。结果表明:0.1 mol/L秋水仙素处理6次的效果最佳。与二倍体相比,四倍体植株、气孔、花器官均表现巨大性;气孔密度、结实率显著降低;四倍体白菜蛋白质、可溶性糖和维生素C含量比二倍体分别增加15.69%、71.25%和22.18%;夏季高温条件下四倍体表现出良好的丰产性和抗热性。  相似文献   

9.
库拉索芦荟的多倍体诱导及其变异初报   总被引:19,自引:2,他引:17  
在组织培养条件下,对库拉索芦荟(Aloe vera L.)用秋水仙素进行染色体加倍的诱导处理,结果表明:用含0.06%秋水仙素处理12h后诱变频率可达50%,其效果最佳。经秋水仙素诱导的加倍群体与正常二倍体植株比较,植株的大多数叶片变厚,叶色变深,叶片变大,气孔增大而单位叶面积气孔数减少。对变异材料进行细胞学研究所发现,体细胞中期染色体为2n=4x=28,为4倍体。未加倍前的二倍体为2n=2x=14。检测中也发现有少数植株有2n=14和2n=28两种细胞型的情况。  相似文献   

10.
The possibility was considered that osmotic adjustment, the ability to accumulate solutes in response to water stress, may contribute to growth rate differences among closely-related genotypes of trees. Progeny variation in osmotic adjustment and turgor regulation was investigated by comparing changes in osmotic and pressure potentials, soluble carbohydrates, and amino acids in osmotically stressed seedlings in 4 full-sib progenies of black spruce [ Picea mariana (Mill.) B. S. P.] that differed in growth rate under drought. Osmotic stress was induced by a stepwise increase in the concentration of polyethylene glycol (PEG)-3350 from 10 (w/v) to 18 and 25%, which provided osmotic potentials in solution culture of -0.4, -1.0 and -2.0 MPa each for 3 days. All 4 progenies maintained a positive cell turgor even at 25% PEG, due to a significant decline in osmotic potential. Although total amino acids, principally proline, increased, ca 60% of the decrease in osmotic potential was attributable to soluble carbohydrates and glucose was the major osmoregulating solute. There was little progeny variation in any of measured parameters in unstressed seedlings. Compared to two slower-growing progenies, the two progenies capable of more vigorous growth under drought in the field accumulated more soluble carbohydrates (mainly glucose and fructose), developed lower osmotic potential and maintained higher turgor pressure when osmotically-stressed in solution culture. The ability to adjust osmotically and maintain turgor under drought stress could thus be a useful criterion for the early selection of faster-growing, drought-tolerant genotypes.  相似文献   

11.
Although recent studies have suggested that the microfilament (MF) cytoskeleton of plant cells participates in the response to salt stress, it remains unclear as to whether the MF cytoskeleton actually plays an active role in a plant's ability to withstand salt stress. In the present study, we report for the first time the role of MFs in salt tolerance of Arabidopsis thaliana . Our experiments revealed that Arabidopsis seedlings treated with 150 m m NaCl maintained MF assembly and bundle formation, whereas treatment with 250 m m NaCl initially induced MF assembly but subsequently caused MF disassembly. A corresponding change in the fluorescence intensity of MFs was also observed; that is, a sustained rise in fluorescence intensity in seedlings exposed to 150 m m NaCl and an initial rise and subsequent fall in seedlings exposed to 250 m m NaCl. These results suggest that MF assembly and bundles are induced early after salt stress treatment, while MF polymerization disappears after high salt stress. Facilitation of MF assembly with phalloidin rescued wild-type seedlings from death, whereas blocking MFs assembly with latrunculin A and cytochalasin D resulted in few survivors under salt stress. Pre-treatment of seedlings with phalloidin also clearly increased plant ability to withstand salt stress. MF assembly increased survival of Arabidopsis salt-sensitive sos2 mutants under salt stress and rescued defective sos2 mutants. Polymerization of MFs and its role in promoting survival was also found in plants exposed to osmotic stress. These findings suggest that the MF cytoskeleton participates and plays a vital role in responses to salt and osmotic stress in Arabidopsis .  相似文献   

12.
Experiments were done to test if Beauveria bassiana can become an endophyte in sorghum and confer protection from stem borer. Four-week-old sorghum seedlings were treated with B. bassiana. The plants were examined for endophytic presence of B. bassiana, 30 and 60 days after treatment. Stem cultures from treated plants showed growth of B. bassiana. PCR amplification using fungal specific primers for a conserved region of β tubulin gene yielded identical 360 bp products from both B. bassiana and treated sorghum plants. In a subsequent experiment, B. bassiana treated and untreated (control) sorghum plants were artificially infested with stem borer (Chilo partellus) larvae 15 days post treatment and the extent of damage was compared. About 40% of the control plants developed dead heart while no plant in the B. bassiana treated plot did. In the surviving control plants, stem tunneling by shoot borer was significantly higher compared to B. bassiana treated sorghum plants.  相似文献   

13.
Diploid and polyploid mitoses could be stimulated in excised segments of the mature region of pea roots grown on a sterile culture medium. Diploid mitoses were observed in segments cultured on water alone for 72 hours. Their frequency was increased by the presence of salts, sucrose, vitamins, and any two or all three of the following: an amino mixture, auxins, and kinetin. Polyploid mitoses were observed 72 hours after the beginning of the culture period in segments cultured on salts, sucrose, vitamins, auxins, and kinetin. Polyploid mitoses required the presence of auxins and kinetin in the culture medium. Their frequency was not affected by the presence of a reduced nitrogen source. Light treatments had no effect on the frequency of diploid or polyploid mitoses. Diploid mitoses were first observed about 24 hours after the beginning of the culture and their frequency increased thereafter. Experiments with colchicine showed that diploid cells were entering mitosis for the first time as late as 60 hours after the beginning of the culture. Polyploid mitoses showed a long lag time when compared with diploid mitoses. They began at about 60 hours and their frequency increased thereafter. Experiments with colchicine showed that polyploid cells were entering mitosis for the first time as late as 84 hours after the beginning of the culture. The presence of kinetin in the medium was not required during the first 24 hours in culture for the appearance of polyploid mitoses at 74 hours. However, the presence of kinetin was required after 24 hours. Auxin was required at some time during the first 24 hours of the culture and its continuous presence may be required for the stimulation of polyploid mitoses.  相似文献   

14.
15.
Tetraploids were successfully produced from diploid seeds obtained through interspecific crossing between Calanthe discolor and Calanthe sieboldii by treating with colchicine or oryzalin. Colchicine was tested at concentrations of 0.05 and 0.1 % for 0, 3, or 7 days and oryzalin was tested at a concentration of 0.003 % for 1, 2, 4, and 7 days, and the ploidy of the seedlings was determined by flow cytometry. Tetraploids (4×) were obtained from the interspecific hybrid seeds treated with all colchicine and oryzalin concentrations. The most efficient condition for inducing tetraploids seemed to be treated with 0.003 % oryzalin for 1 or 2 days. Cytological and morphological evidence confirmed the results of flow cytometric analysis. The stomatal density and sizes of the tetraploid plants were significantly higher and larger than those of the diploid plants. Differences in leaf shape were found between the tetraploid and diploid plants under the same growing conditions: the leaves of the diploids were elongated and those of the tetraploids were round.  相似文献   

16.
Gu XF  Yang AF  Meng H  Zhang JR 《Plant cell reports》2005,24(11):671-676
Tetraploid plants of Zizyphus jujuba Mill. cv. Zhanhua were obtained with in vitro colchicine treatment. Shoot tips from in vitro-grown plants were treated with five different concentrations of colchicine (0.01, 0.03, 0.05, 0.1, 0.3%) in liquid MS medium (Murashige and Skoog 1962), and shaken (100 rpm) at 25 °C in darkness for 24, 48, 72 or 96 h, respectively. Tetraploids were obtained at a frequency of over 3% by using 0.05% colchicine (48 h, 72 h) and 0.1% colchicine (24 h, 48 h) treatment as determined by flow cytometry. Cytological and morphological evidence confirmed the results of flow cytometric analysis. The chromosome number of diploid plants was 24 and that of tetraploid plants was 48. The stomata sizes of tetraploid plants were significantly larger than those of diploid plants, while the frequency of stomata were reduced significantly. Similarly, the chloroplast number of guard cells of tetraploid plants increased significantly. The selected tetraploid plants were grafted onto mature trees of Z. jujuba Mill. cv. Zhanhua in the field, resulted in thicker stems, rounder and succulent leaves, larger flowers and a delay in florescence time (3–4 days later) than diploid plants.  相似文献   

17.
Summary A number of diploid inbred lines of Lolium perenne were treated with colchicine at the early seedling stage to induce chromosome doubling. In each inbred line the colchicine-treated undoubled diploids were kept as controls, as well as the normal untreated diploids. Comparisons of vegetative growth and development, involving the three treatments within each line, revealed that colchicine treatment of seedlings has long-lasting effects upon plant growth and development independent of chromosome doubling, and that for certain characteristics the effects of chromosome doubling are confounded with other effects of the treatment used to produce tetraploids. This colchicine induced variation in the diploids is transmitted through the seed generations in at least one of the inbred lines. The variation appears to be non-random and also shows a strong genotypic component. In so far as the effects of chromosome doubling could be determined, they showed the usual gigas response but were again strongly influenced by genotype.  相似文献   

18.
以彩色马蹄莲品种‘Parfait’(Zantedeschiahybrid‘Parfait’)离体丛生芽块为实验材料,对其多倍体诱导过程中秋水仙素和二甲基亚砜(DMSO)浓度以及浸泡时间进行分析,并比较了多倍体与二倍体植株在叶形指数、气孔特征、叶绿素含量和染色体数的差异,最终通过回归分析确定最佳诱导条件。结果显示:随秋水仙素质量体积分数的提高及浸泡时间的缩短,各处理组的丛生芽存活率逐渐增加且均低于对照,而多倍体诱导率逐渐降低且均显著高于对照。综合考虑丛生芽存活率和多倍体诱导率等因素,根据回归分析确定‘Parfait’多倍体诱导的最佳条件为:丛生芽块在含质量体积分数0.20%秋水仙素和体积分数0.10%DMSO的MS液体培养基中浸泡24h,多倍体诱导率可达50.02%。比较分析结果表明:多倍体植株的叶片长度、厚度和长宽比分别为二倍体植株的1.23、1.19和2.93倍,保卫细胞的长度和宽度以及每气孔叶绿体数分别为二倍体植株的1.90、1.96和2.03倍,叶绿素a和总叶绿素含量分别为二倍体植株的1.28和1.17倍;但多倍体植株的叶宽和气孔密度均较小,分别仅为二倍体植株的42.08%和61.55%。除叶绿素b含量外,多倍体植株的其他生物学特性均与二倍体植株差异显著。染色体计数结果显示:获得的多倍体大多为四倍体,染色体数为2n=64,同时还得到了一些嵌合体和六倍体。研究结果表明:彩色马蹄莲品种‘Parfait’多倍体植株的多数生物学特性优于二倍体植株,且其对环境的适应性更强。  相似文献   

19.
Screening for drought tolerance in Sorghum using cell culture   总被引:4,自引:0,他引:4  
Summary Callus growth from 10 cultivars ofSorghum bicolor (L.) Moench was measured with increasing levels of polyethylene glycol (PEG) as an osmoticum in the medium to determine whether differences among these cultivars at the cellular level in response to osmotic stress existed. These cellular ratings were compared to field ratings from the 10 tolerant-to-susceptible cultivars when grown under drought conditions to determine whether cellular ratings corresponded to differences in drought tolerance at the plant level. Callus cultures were grown on Murashige and Skoog inorganic salt formulation plus vitamins, 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin and sucrose, supplemented with 0 to 25% (wt/vol) PEG corresponding to −0.2 to −1.62 MPa osmotic potential. Results suggest that PEG-induced osmotic stress on callus cultures can be used to screen sorghum cultivars for potential early field (preflowering) drought tolerance. This implies that at least a component of the early field drought tolerance in sorghum may have a cellular basis. This study was supported by U.S. Agency for International Development Grant AID/DSAN/XII/G-0149, and USDA Competitive Grants Program.  相似文献   

20.
Echinacea purpurea (L.) is one of the important medicinal plant species. To obtain the tetraploid plants of Echinacea purpurea with improved medicinal qualities, the root tips of two true leaves seedlings were imbibed in 0.25 % (w/v) colchicine solution for 24, 48, 72, 96 and 168 h. The ploidy level of plants was determined by chromosome counting of root tip cells, and confirmed by flow cytometric analysis. Tetraploid induction occurred in seedlings treated for 24, 48 and 72 h at colchicine solution. The morphological, physiological, cytological, and phytochemical characteristics of diploid and colchicine-induced tetraploid plants were compared. Results indicated that tetraploid plants had considerable larger stomata, pollen grain, seed and flower. Moreover, chloroplast number in guard cells, amount of chlorophyll (a, b, and a + b), carotenoids as well as width and thickness of leaves were increased in tetraploids. However, stomata frequency, leaf index, plant height, and quantum efficiency of photosystem II in tetraploid were lower than diploid plants. High-performance liquid chromatography analysis showed that leaves of the tetraploid plants had more cichoric acid (45 %) and chlorogenic acid (71 %) than diploid plants. It was concluded that morphological and physiological characteristics can be used as useful parameters for preliminary screening of putative tetraploids in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号