首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary vascular connection between primary and secondary root of Glycine max (L.) Merr. was derived from stelar parenchyma and pericycle. Inner stelar parenchyma, associated with the parent metaxylem and outer stelar parenchyma adjacent to the pericycle, were resonsible for the histogenesis of the primary xylem connection. Acropetal maturation of the diarch xylem connection occurred after the lateral root emerged from the parent root. Development of tetrarchy occurred distal to the diarch xylem connection. The concentric primary phloem connection was derived from the pericycle and outer stelar parenchyma. Acropetal maturation of the primary phloem connection occurred prior to lateral root emergence from the parent root. Secondary growth quickly augmented the primary vascular connection. A substantial amount of mature secondary xylem formed prior to maturation of the secondary phloem. The structure of the primary and secondary vascular connections is described.  相似文献   

2.
Seedlings of Atriplex hortensis were studied to ascertain; 1) in which organ the primary thickening meristem (PTM) first differentiates; 2) the direction of differentiation of the PTM, and 3) the pattern of differentiation of conjunctive tissue. The PTM initially differentiates in pericycle of the primary root base 11 days after emergence of the primary root. It then differentiates in the transition region of the hypocotyl, mostly in cells of pericycle between pairs of vascular bundles. In the upper hypocotyl, PTM differentiates by day 20 in the inner layer of cortical parenchyma. In the epicotyl, PTM apparently differentiates in the inner layer of cortex, by day 24. Desmogic xylem differentiates from radial files of internal conjunctive tissue cells and desmogic phloem differentiates opposite desmogic xylem strands from newly formed cells of external conjunctive tissue. No interfascicular cambium differentiates in the root, hypocotyl, or epicotyl.  相似文献   

3.
Differentiation of the primary thickening meristem (PTM) was investigated in seedlings and older plants of Phytolacca americana L. Initiation of the PTM occurs in pericycle or inner cortex at the hypocotyl-primary root junction of young plants. Differentiation of the PTM in stems occurs acropetally in a cylinder of randomly dividing cells termed the diffuse lateral meristem (DLM). The PTM produces secondary tissue to the inside (internal conjunctive tissue) and to the outside (external conjunctive tissue). Patches of xylem and phloem differentiate, opposite each other, in recently produced internal and external conjunctive tissue, respectively. The resulting strands (desmogen strands) of xylem and phloem are secondary in origin, and are peripheral to primary vascular tissues. Phloem of desmogen strands usually differentiates first. Xylem of desmogen strands is composed of both tracheids and vessel elements; the latter sometimes becoming occluded with tyloses and unidentified substances. As root and hypocotyl increase in diameter, cylinders of PTMs differentiate successively and centrifugally in external conjunctive tissue. Even though the first PTM differentiates in pericycle or inner cortex and later PTMs differentiate in external conjunctive tissue, all are referred to as PTMs because of their similar activity. Multiple rings of desmogen strands can be observed in transections of lateral roots, primary roots and hypocotyls. Throughout the length of the stem, only one ring of desmogen strands is present. Fewer rings of desmogen strands are present in the top of the hypocotyl and cotylendonary node, as compared to the subjacent hypocotyl, due to anastomoses of centrifugally differentiating desmogen strands.  相似文献   

4.
Anomalous secondary thickening occurs in the main axis of Bougainvillea spectabilis as a result of a primary thickening meristem which differentiates in pericycle. The primary thickening meristem first appears in the base of the primary root about 6 days after germination and differentiates acropetally as the root elongates. It begins differentiating from the base of the hypocotyl toward the shoot apex about 33 days after germination. The primary thickening meristem is first observable at the base of the first internode about 60 days after germination. It then becomes a cylinder in the main axis of the seedling. No stelar cambial cylinder forms in the primary root, hypocotyl, or stem because vascular cambium differentiation occurs neither in the pericycle opposite xylem points in the primary root nor in interfascicular parenchyma in the hypocotyl or stem. The primary vascular system of the stem appears anomalous because an inner and an outer ring of vascular bundles differentiate in the stele. Bundles of the inner ring anastomose in internodes, whereas those of the outer ring do not. Desmogen strands each of which is composed of phloem, xylem with both tracheids and vessels, and a desmogic cambium, differentiate from prodesmogen strands in conjunctive tissue. The parenchymatous cells surrounding desmogen strands then differentiate into elongated simple-pitted fibers and thick-walled fusiform cells that are about the same length as the primary thickening meristem initials.  相似文献   

5.
The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.  相似文献   

6.
The seedling root system of Pseudotsuga menziesii (Mirb.) Franco consists of the primary root, active long laterals, long laterals that become mycorrhizal, and short roots that may or may not become mycorrhizal. Numerous adventitious roots arise from the pericycle in young roots and from the vascular cambium and pericycle in older roots following pruning. All actively growing apices have a single plate of initials, a complex zonation of mother cells, and a similar pattern of primary tissue differentiation. Short roots and mycorrhizal short roots have 2 plates of initials, one producing the stele and the other the root cap and cortex, and differentiation occurs close to the apex. Primary and adventitious roots are usually triarch, while long laterals are usually diarch as are all short roots. The latter lack secondary xylem, but mycorrhizal short roots may produce a small amount of secondary phloem.  相似文献   

7.
8.
The large seeds of Opuntia basilaris Engelm. & Bigel. show an unusually high percentage of germination, followed by a rapid development of the seedling during the first 30 days of growth. The primary root has six xylem arms alternating with six phloem poles around a large central pith. Development of metaxylem opposite each of the primary phloem poles results in the formation of eight collateral bundles. Secondary and tertiary roots have four xylem and phloem poles with xylem developing to the center of the stele. The transition zone is characterized by a gradual disappearance of all but two of the primary xylem arms of the root. Metaxylem development in the central portion of the transition zone interconnects the protoxylem poles forming a primary xylem cylinder around the central pith. The collateral bundles pass through the transition zone essentially without change.  相似文献   

9.
白鲜根的发育解剖学研究   总被引:1,自引:0,他引:1  
应用半薄切片、常规石蜡切片并结合离析法,对药用植物白鲜(Dictamnus dasycarpus Turcz.)根的发生发育过程进行了研究。结果表明:白鲜根的发生发育过程包括4个阶段,即原分生组织阶段、初生分生组织阶段、初生结构阶段以及次生结构阶段。原分生组织位于根冠内侧及初生分生组织之间,衍生细胞分化为初生分生组织。初生分生组织由原表皮、基本分生组织以及中柱原组成。原表皮分化为表皮,基本分生组织分化为皮层,中柱原分化为维管柱,共同组成根的初生结构;在初生结构中,部分表皮细胞外壁向外延伸形成根毛,皮层中分布有油细胞,内皮层有凯氏带,初生木质部为二原型或偶见三原型,外始式;根初生结构有髓或无。次生结构来源于原形成层起源的维管形成层的活动以及中柱鞘起源的木栓形成层的活动;白鲜次生韧皮部宽广,其中多年生根中可占根横切面积的85%,另外除基本组成分子外,还分布有油细胞;周皮发达,木栓层厚;初生皮层、次生木质部和次生韧皮部薄壁细胞中常充满丰富的淀粉粒。  相似文献   

10.
西洋参根的发育解剖学研究   总被引:2,自引:0,他引:2  
西洋主根顶端的原分生组织由三群原始细胞组成。初生木质部为三原型。维管形成层产生的次生维管组织中薄壁细胞占主导地位;维管分子量少、聚集成群,分散在薄壁组织中。周皮加、周皮发生较迟,其木栓形成层由紧靠内皮层的皮层细胞产生。不同年龄西洋参主根随着龄龄的增加,周皮、次生真心皮部和木质部面积均呈增加趋势,但韧皮部与木质部面积比值自5:1下降至1:1。一年生根由中柱鞘产生初生分泌道,由维管形成层产生一圈次生分  相似文献   

11.
本研究采用常规石蜡切片结合荧光显微镜技术对银州柴胡根的发育解剖学进行了研究。结果表明:(1)银州柴胡根顶端分生组织由原分生组织及其衍生的初生分生组织组成。原生分生组织细胞体积小、排列紧密、细胞质浓厚、细胞核大而明显,具有典型的分生组织的特点;(2)初生分生组织由根冠原、表皮原、皮层原和中柱原组成。在根发育过程中,表皮、皮层和维管柱共同组成其初生结构。银州柴胡根初生木质部为二原型或三原型,外始式;同时在根表皮细胞的径向壁观察到径向壁的细胞壁加厚;(3)在根次生生长过程中,位于初生木质部和初生韧皮部之间的原形成层恢复分裂能力产生维管形成层,维管形成层不断地向外产生次生韧皮部,向内产生次生木质部;同时位于根内皮层内方的中柱鞘细胞恢复分裂能力产生木栓形成层,木栓形成层向外形成木栓层,向内形成栓内层。在维管形成层和木栓形成层分裂的过程中,在次生韧皮部和中柱鞘组织中产生形态大小不同的分泌道,均为次生的裂生型分泌道。研究认为,银州柴胡根的结构类似于药典收录的北柴胡和红柴胡根的结构特点,但其根表皮细胞径向壁加厚、木纤维的分布、分泌道的大小和数量等有别于柴胡属其它植物,可作为柴胡属植物重要的分类鉴定依据。  相似文献   

12.
Seedlings of Brassica napus L. 2–11 days after germination were used. However, the most investigation was concentrated on the 6-day old seedlings. The primary root has a diarch protostele, the two groups of primary phloem alternate with the primary xylem. At higher level, the metaxylem is gradually differentiated in a lateral direction. Being coincident with this changes of the metaxylem, the groups of phloem cell are extended. The stele of the lower hypocotyl is root-like and has no pith. In the middle hypocotyl, there is a further lateral differentiation of the metaxylem. At the higher level, four metaxylem arms appear and the groups of phloem are extended circumferentially to form two crescent shaped sectors. In the upper hypocotyl below 0.2 cm of the cotyledonary node, a central pith has been formed which separates the differentiating primary xylem into two distinct units. At a slightly higher level, each primary phloem divides into two small groups, at this time, each xylem unit and the two adjacent groups of phloem constitute a cotyledonary trace. The foliar traces of the first two foliage leaves appear in the inter-cotyledonary plane between the vascular elements of the cotyledonary traces. At this level, the vascular tissue of the hypocotyl forms a siphonostele made up of two cotyledonary traces and the two foliage leaves, where the root-stem transition has nearly been completed, while the endarch condition is not attained in the hypocotyl. At incresing distances from the cotyledonary node upwards, in the cotyledonary petiole, the protoxylem occupies a more and more adaxial position and the metaxylem a more and more abaxial direction and, thus, the endarch condition is attained. The primary system of the root, hypocotyl, and cotyledons forms a complete circular system, the plumular vascular elements are directly connected by secondary elements formed by the cambium in the region of the hypocotyl. As for the results mentioned above, the authers have not detected that the primary xylem has a rotation of 180˚, as described by Van Tieghem.  相似文献   

13.
牛膝根的结构发育与三萜皂苷积累的关系   总被引:6,自引:0,他引:6  
应用植物解剖学、组织化学定位及植物化学技术,研究了不同发育时期牛膝根的结构特征与三帖皂苷积累的关系。结果表明:牛膝根的初生结构和次生结构类似于一般双子叶植物,其根的加粗主要是由于三生结构的发生和分化。第一圈额外形成层产生于次生韧皮部外侧的薄壁组织细胞和射线细胞,以后的每一圈由前一圈向外衍生的薄壁组织细胞产生。额外形成层无纺锤状原始细胞和射线原始细胞之分,在切向纵切面上呈叠生排列。三生维管束以离心方式排成整齐的同心环状,由薄壁结合组织将其彼此分开,其圈数与额外形成层的圈数是一致的,随着根的个体发育而不断增加。在根的初生结构中,三萜皂苷主要分布于中柱鞘、初生韧皮部及初生韧皮部和初生木质部之间的薄壁组织细胞内;在根的次生结构中,主要分布于次生韧皮部及栓内层的薄壁组织细胞内。当三生结构形成后,除次生韧皮部及栓内层细胞外,在额外形成层和三生维管束韧皮部细胞内均有皂苷类物质积累。三生结构在牛膝根中占主要地位,是三萜皂苷积累与分布的主要场所。在牛膝根的生长发育过程中,三萜皂苷元齐墩果酸的百分含量呈“S”型曲线增长,其根的增长、加粗、三生维管束圈数、三萜皂苷总量及根中干重的积累量都在出苗后约120天达到高峰,此时应为牛膝根的最佳采收期。  相似文献   

14.
The stem of Circaeaster agrestis Maxim. is very short but the length of hypocotyl is comparatively long, almost occupying the whole length of the plant. This tender hypocotyl is mainly supported by the thickening of cuticle on the outer wall of the epidermal cell and the primary xylem in the center. Between primary xylem and primary phloem there are 2–3 layers of parenchymatous cells, regularly or irregularly arranged, but no cambial zone can be recognized. The transition region where root and stem meet showed no evidence of twisting, splitting or inversion of the strands in the primary vascular tissues which are common in most of the dicots. The extending cotyledon traces differentiate directly from the parenchymatous cells which locate on the outside of the poles of primary xylem. The first and the second leaf traces are organized in the middle of the primary phloem.  相似文献   

15.
远志根的发育解剖学研究   总被引:1,自引:0,他引:1  
运用石蜡切片法对远志根的发育过程及1~3年生根的结构进行解剖学研究。结果显示:远志根的原分生组织由3群原始细胞组成,具有典型分生组织的细胞学特征。初生分生组织分化为根冠原、表皮原、皮层原和中柱原;初生结构由表皮、皮层和中柱组成,初生木质部为二原型。次生生长是依靠维管形成层和木栓形成层的活动完成,次生结构从外到内由周皮和次生维管组织组成;远志根次生结构特点为:次生韧皮部在次生维管组织中占主要部分,次生韧皮部中以韧皮薄壁细胞为主且其中储存有丰富的内含物,随着根龄的增加,韧皮薄壁细胞中的内含物也随之增加。3年生的主根中次生韧皮部薄壁细胞中的内含物最丰富;不同年份远志的主根随根龄的增加,周皮、次生韧皮部和次生木质部的面积都呈增加趋势,其中韧皮部和木质部的面积比值随根龄增长呈由小到大的变化,这是远志根的显著特点;根中的周皮发达,具有较厚的木栓层,次生木质部中导管和纤维发达,导管分布频率较高,并具有较大的口径。周皮和次生木质部的结构特征与远志的抗旱特性相适应。  相似文献   

16.
应用植物解剖学方法对远志(Potygda tenuiflia Willd.)根的发生和发育过程,以及1 a生与2 a生根的结构进行了比较观察,还应用组织化学方法对远志根储藏物质及主要药用成分积累部位进行了研究.结果表明:远志的药用部位为其主根,发育过程包括原分生组织、初生分生组织、初生结构和次生结构4个发育阶段.原分生组织来源于胚根,由3群原始细胞组成,具有典型分生组织的细胞学特征;初生分生组织包括根冠原、表皮原、皮层原和中柱原;初生结构由表皮、皮层和维管柱组成,初生木质部为二原型;次生生长主要是依靠维管形成层和木栓形成层的活动来完成.木栓形成层由中柱鞘细胞恢复分裂能力而形成,并且产生多层栓内层薄壁细胞.2 a生远志根的基本结构与1 a生的基本相同,只是栓内层增加至10层以上.远志根的储藏物质主要是脂类物质及少量的多糖.远志皂苷积累在远志根的薄壁细胞中,而山酮类化合物主要分布在根的木栓形成层、栓内层薄壁细胞和次生韧皮部中.  相似文献   

17.
六盘山鸡爪大黄根蒽醌类化合物组织化学定位的研究   总被引:1,自引:1,他引:0  
章英才  黄新玲 《植物研究》2008,28(3):375-379
采用组织化学方法研究了六盘山鸡爪大黄根蒽醌类化合物的组织化学定位特征及贮藏和积累的规律。结果表明:蒽醌类化合物在根内的贮藏是多位点的,在根周皮的木栓层和栓内层、次生维管组织的维管射线和根中央的部分木薄壁细胞内不同程度地贮藏和积累了一定数量的蒽醌类化合物,次生木质部的木射线和次生韧皮部的韧皮射线是主要贮藏和积累的部位,早期形成的维管射线中蒽醌类化合物的含量较晚期形成的射线含量高。  相似文献   

18.
BELL  A. D. 《Annals of botany》1976,40(2):233-240
The vascular system present in a grass seedling axis persistsin a functional state at the base of a maturing plant, but undergoesa number of modifications. Two strands of phloem, accompanied by some internal xylem, differentiatein association with the bicollateral mesocotyl trace at rightangles to the existing phloem, resulting in a tetrarch bundle.Lateral seminal roots are themselves tetrarch and the vascularinsertion of a seminal root on to the mesocotyl is a distinctivethree-dimensional feature. At the base of the mesocotyl thetetrarch bundle merges with the tetrarch bundle of the primaryseminal root via a transition zone. The four phloem poles uniteand then diverge again; the central xylem strand splits intothree and then reunites, the two tissues being intimately interlockedby this rearrangement. The additional vascular tissue of the mesocotyl extends up intothe coleoptilar node and becomes involved in the vascular attachmentof nodal roots at this point. Additional vascular tissue continuesto differentiate in the periphery of the maturing stem and ishere termed the ‘peripheral plexus’. In the seedling, the xylem of the ‘bridge’ linkingthe mesocotyl trace with the scutellar trace is associated withxylem transfer cells and also contains tracheids with distinctive,thin-barred scalariform thickening. These transfer cells disappearas the plant matures but numerous tracheids with thin-barredscalariform thickening are then to be found. The possible significanceof transfer cells in the coleoptilar node is discussed.  相似文献   

19.
掌叶大黄根多糖的积累分布特征   总被引:2,自引:0,他引:2  
采用组织化学方法和苯酚硫酸比色法研究了掌叶大黄(Rheum palmatum)根中大黄多糖的贮藏分布特征和含量变化规律。结果表明:大黄多糖在根内的贮藏是多位点的,在根周皮的栓内层、次生维管组织的薄壁细胞内不同程度地贮藏和积累了一定数量的大黄多糖,次生木质部的木薄壁细胞和次生韧皮部的韧皮薄壁细胞是主要贮藏和积累的部位;不同发育时期根中大黄多糖含量的变化规律为,随着植物的不断成熟,根及其各组织中大黄多糖的总含量表现为逐渐增高的趋势,但在发育的后期略有下降;韧皮薄壁细胞与木薄壁细胞相比,贮藏大黄多糖的含量相对较多,大黄多糖的贮藏积累方式为逐渐累积的方式。  相似文献   

20.
Seminal root tissue of Hordeum vulgare L. var. Barsoy was fixed in glutaraldehyde and osmium tetroxide and studied with the light and electron microscopes. The roots consist of an epidermis, 6–7 layers of cortical cells, a uniseriate endodermis and a central vascular cylinder. Cytologically, the cortical and endodermal cells are similar except for the presence of tubular-like invaginations of the plasmalemma, especially near the plasmodesmata, in the former. The vascular cylinder consists of a uniseriate pericycle surrounding 6–9 phloem strands occurring on alternating radii with an equal number of xylem bundles. The center of the root contains a single, late maturing metaxylem vessel element. Each phloem strand consists of one protophloem sieve element, two companion cells and 1–3 metaphloem sieve elements. The protophloem element and companion cells are contiguous with the pericycle. Metaphloem sieve elements are contiguous with companion cells and are separated from tracheary elements by xylem parenchyma cells. The protoplasts of contiguous cells of the root are joined by various numbers of cytoplasmic connections. With the exception of the pore-plasmodesmata connections between sieve-tube members and parenchymatic elements, the plasmodesmata between various cell types are similar in structure. The distribution of plasmodesmata supports a symplastic pathway for organic solute unloading and transport from the phloem to the cortex. Based on the arrangement of cell types and plasmodesmatal frequencies between various cell types of the root, the major symplastic pathway from sieve elements to cortex appears to be via the companion and xylem parenchyma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号