首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological theory predicts a positive association between environmental heterogeneity of a given habitat and the magnitude of phenotypic plasticity exhibited by resident plant populations. Taraxacum officinale (dandelion) is a perennial herb from Europe that has spread worldwide and can be found growing in a wide variety of habitats. We tested whether T. officinale plants from a heterogeneous environment in terms of water availability show greater phenotypic plasticity and better performance in response to experimental water shortage than plants from a less variable environment. This was tested at both low and moderate temperatures in plants from two sites (Corvallis, Oregon, USA, and El Blanco, Balmaceda, Chile) that differ in their pattern of monthly variation in rainfall during the growth season. We compared chlorophyll fluorescence (photosynthetic performance), flowering time, seed output, and total biomass. Plants subjected to drought showed delayed flowering and lower photosynthetic performance. Plants from USA, where rainfall variation during the growth season was greater, exhibited greater plasticity to water shortage in photosynthetic performance and flowering time than plants from Chile. This was true at both low and moderate temperatures, which were similar to early- and late-season conditions, respectively. However, phenotypic plasticity to decreased water availability was seemingly maladaptive because under both experimental temperatures USA plants consistently performed worse than Chile plants in the low water environment, showing lower total biomass and fewer seeds per flower head. We discuss the reliability of environmental clues for plasticity to be adaptive. Further research in the study species should include other plant traits involved in functional responses to drought or potentially associated with invasiveness.  相似文献   

2.
《植物生态学报》2017,41(7):716
Aims Diversity of climbing seed plants and their reproductive habits and characteristics are central for the understanding of community structure and dynamics of forests and hence are important for forest protection. However, little is known about the climbing seed plants in northern tropical karst seasonal rain forests. Here, using the data of the species diversity and reproductive habits of climbing seed plants in Nonggang, Guangxi, China, we aim to 1) explore the species diversity and distribution of climbing seed plants in northern tropical karst seasonal rain forests, 2) study the flowering and fruiting phenology and 3) the associations of reproductive characteristics to the environment. Methods Species composition, preferred habitat, flowering time, fruiting time and fruit types of climbing seed plants were surveyed. The seasonality of flowering and fruiting were analyzed by concentration ratio and circular distribution. Climbing seed plants were divided into three groups according to their growth forms and places in spatial forest structure: bush ropes, herbaceous vines and lianas. Monthly flowering ratios, fruiting ratios, fruit types and their ratios in different groups were determined. These relationships of flowering ratio, fruiting ratio, fruit type and its ratio to meteorological factors were investigated using Pearson correlation analysis. Important findings There were a total of 333 species of climbing seed plants in Nonggang karst seasonal rain forest, belonging to 145 genera and 56 families. Bush ropes, herbaceous vines and lianas contained 119, 88 and 126 species, respectively. At species level, herbaceous vines were more abundance in valleys, while bush ropes and lianas were more abundance on slopes. Flowering and fruiting of climbing seed plants occurred seasonally, with flowering peaking in April to September, while fruiting peaking in July to December. The seasonality of flowering and fruiting in bush ropes was weaker than in herbaceous vines and lianas. Flowering ratio was significantly positively correlated with rainfall and air temperature, which suggest that flowering peaks in monsoon season. Peak time for fruiting was about three months later than the peak time of flowering, around the end of monsoon season. The ratio of samara species to all fruiting species in lianas was significantly positively correlated with wind speed, but negatively correlated with rainfall and air temperature. It showed that samara in lianas tended to occur in dry season with high wind speed. In conclusion, species diversity and the seasonal features of reproduction of climbing seed plants in Nonggang karst seasonal rain forest were closely related to the spatial and temporal variations of habitat resources.  相似文献   

3.
几个气候区木本植物的开花结果物候   总被引:9,自引:0,他引:9  
分析了我国海南和广东、秦岭、东北等不同森林气候区木本植物开花、结果物候以及果实和种子大小分布的规律。三个区系的开花、结果物候和种子、果实大小分布,都有类似的格局。但随着纬度的升高,一年中植物开花和结果的时间更加集中,海南和广东整年都有木本植物开花,秦岭有10个月左右,而东北仅有7个月。并且随着纬度升高,开花高峰的时间较迟,而结果高峰的时间较早。在海南和广东,热带区系成分和温带区系成分的木本植物,一年中开花和结果物候格局是很一致的。三个区系木本植物的果实和种子大小分布的格局也是很相似的,但海南和广东植物果实和种子大小范围较大,较多样,随着纬度升高,果实和种子大小范围变小,较单调。三个区系木本植物最小的果实的大小都差不多,为0.1cm,但最小的种子的大小却很不相同,随着纬度的升高而增大,开花和结果物候与月均气温及降水量的相关性因不同的区系而不同.鼎湖山常见木本植物果熟期和气候因子的相关性比结果期更显著。  相似文献   

4.
Synchrony in the phenology of a culturally iconic spring flower   总被引:1,自引:0,他引:1  
We examine the flowering phenology of the cultural iconic Spring Snowflake Leucojum vernum, a considerable tourist attraction, recorded from two sites in western Poland. Flowering dates at the two sites were closely correlated but about 6 days later at the more natural area. The end of flowering was associated with the start of canopy leafing. Early flowering was related to a longer flowering season which may benefit ecotourism under future climate warming.  相似文献   

5.
This study explores the effects of emergence time and reproductive phenology on seed number, seed size, and seedling survival in a population of the alpine buttercup, Ranunculus adoneus. Phenology in this snow bowl population is structured by snow depth. Plants in late melting interior portions of the bowl emerged and flowered 3 to 4 wk after those in early melting zones at the bowl perimeter during the summers of 1988 and 1989. Flowering time differences of buttercups across the bowl were consistent from one year to the next. In 1988, late flowering plants tended to set fewer seeds than early flowering ones; in 1989 no decrease in seed number accompanied flowering date. Path analysis showed that equal fecundity in early and late emerging portions of the bowl population during 1989 resulted from balancing spatial and temporal constraints on seed production. Spatial aspects of habitat quality improved toward the interior of the bowl, but temporal regimes deteriorated in these late melting sites. In both 1988 and 1989 seed size declined with delays in flowering. Path analysis of 1989 data showed that because of reduced time for seed growth, plants in late melting portions of the bowl set smaller seeds than those in earlier melting zones. Differences in seed size due to parental phenology are likely to influence fitness in snow buttercups. Under natural conditions, seedlings from large seeds (>;0.65 mg) have sixfold higher survival than do those from smaller seeds (<;0.65 mg). We conclude that seedling recruitment may be infrequent in late-melting portions of the snow bowl due to delayed parental phenology.  相似文献   

6.
Miscanthus sinensis, M. sacchariflorus and their hybrids have been identified as leading candidates for the provision of bioenergy production across several continents. Flowering time is an important trait affecting biomass yield as well as certain quality attributes, such as moisture content at harvest. The aim of this study was to ascertain the level of diversity available to breeders and potential for hybridisation of different accessions in a large collection of Miscanthus. We also sought to determine trends in flowering time within and between species with respect to environment and origin of collection data (where known), whether flowering order was maintained across years, and the extent of uniformity of flowering in different genotypes. Flowering time was observed weekly in 244 genotypes of two Miscanthus species (M. sinensis, M. sacchariflorus) and inter‐specific hybrids including M. x giganteus over 3 years and using 4 clonal replicates of each genotype on a trial planted near Aberystwyth (Wales, UK). Differences in flowering time across the entire collection ranged from 160 to 334 days (June to November) and photoperiods between 7.8 and 16.6 h, with associated accumulated temperatures of 161 to 865oCd. More than two thirds of the collection flowered by the end of each growing season. M. sinensis individuals were the earliest genotypes to flower and showed the greatest diversity with respect to the onset of flowering. Flowering times in genotypes of known origin in Asia could be partially explained by growing season rain fall, degree days and mean temperature. Uniform flowering was identified in some genotypes. This will be important for the development of genetically diverse seed‐based crops. Rank order of flowering was shown to be consistent across Western Europe, thereby justifying single site trials as the basis of germplasm characterisation for wider geographical deployment.  相似文献   

7.
The reproductive phenology of 60 understorey species was monitored at monthly intervals for 20 months in a medium elevation wet evergreen forest in the Southern Western Ghats. The life forms monitored were herbs (including terrestrial orchids), shrubs and small trees. Flowering and fruiting were non‐uniform with a dry season flowering peak and wet season fruiting peak. Flowering in the understorey correlated negatively with rainfall. No significant correlation was detected for fruiting. Life forms had flowering and fruiting peaks at different times of the year.  相似文献   

8.
Aloe marlothii flowers during dry winter months (July–September) and produces large numbers of wind dispersed seeds. Fire disturbance in a population of several thousand A. marlothii plants at Suikerbosrand Nature Reserve, Gauteng, permitted a series of seed dispersal experiments to be conducted. Germination trials indicated that seedling emergence decreased with increased distance from a well defined aloe stand and burn area margin, with seeds dispersed up to 25 m. Flowering frequency and total seed production were positively correlated with plant height, with seed production estimated to range from 26,000 to 375,000 seeds/plant. Although a large number of seeds are produced by flowering plants the survival rate of seeds did not extend beyond the following flowering season.  相似文献   

9.
Assessing species phenology provides useful understanding about their autecology, to contribute to management strategies. We monitored reproductive phenology of Mimusops andongensis and Mimusops kummel, and its relationship with climate, tree diameter and canopy position. We sampled trees in six diameter classes and noted their canopy position. For both species flowering began in the dry season through to the rainy season, but peaked in the dry season, whilst fruiting occurred in the rainy season and peaked during the most humid period. Flowering was positively correlated with temperature. Conversely, fruiting was negatively correlated with temperature and positively with rainfall, only in the Guineo‐Sudanian zone. For Mandongensis, flowering and fruiting prevalences were positively linked to stem diameter, while only flowering was significantly related to canopy position. For Mkummel, the relationship with stem diameter was significant for flowering prevalence only and in the Guineo‐Sudanian zone. Results suggest that phylogenetic membership is an important factor restricting Mimusops species phenology. Flowering and fruiting of both species are influenced by climate, and consequently climate change might shift their phenological patterns. Long‐term investigations, considering flowering and fruiting abortion, will help to better understand the species phenology and perhaps predict demographic dynamics.  相似文献   

10.
We investigated the effect of flowering time, display size, and local floral density on fruit set in Tolumnia variegata, a pollination-limited orchid that offers no reward to its pollinator(s). During 1990, natural variation in flowering time, display size, and fruit set were monitored in 508 plants at one locality in Puerto Rico. The following season, orchid floral abundance per host tree (Randia aculeata) was manipulated to investigate its effect on fruit set. Four floral abundance treatments were established (700, 500, 300, and 100), each replicated four times. Flowering time was the most important trait affecting fruit set. The proportion of plants setting at least one fruit was significantly high early and late in the season, but low during the flowering peak. Thus, strong disruptive selection differential on flowering phenology was found. Display size had little effect on fruit set. A weak, but significant disruptive selection differential on display size was found. Orchid floral abundance per host tree had a significant effect on fruit set. Early in the season, T. variegata flowers with intermediate number of conspecific flowers exhibited a greater probability of setting fruit than those in host trees with fewer or more flowers. Our results show that flowering phenology may be evolutionarily unstable, possibly a consequence of the deception pollination system. Furthermore, a deception strategy would be relatively unsuccessful in populations where plants are found in either very dense or sparse patches.  相似文献   

11.
Flowering phenology of alpine plants is strongly determined by the timing of snowmelt, and the conditions of pollination of widely distributed plants vary greatly during their flowering season. We examined the reproductive success of the distylous alpine herb, Primula modesta, along the snowmelt gradient under natural conditions, and compared it with the result of artificial pollination experiments. In addition, the compositions and visit frequencies of pollinators to the flower of P. modesta were examined during the flowering period. The pin and thrum plants of P. modesta growing at the same site have an equal ability to produce seeds if a sufficient amount of legitimate pollen grains are deposited on the stigma surface. However, under natural conditions, their seed‐set success was often (even if not always) restricted by pollen limitation, and the functional gender of the pin and thrum plants biased to the female and male, respectively, associated with their growing sites. These variations were not ascribed to resource limitation nor biased morph ratio but to the seasonal changes in pollination situations, a replacement of pollinator types from long‐ to short‐tongued pollinators resulted in unidirectional pollen transfer from long stamens (thrum plants) to long styles (pin plants). The functional gender specialization may enhance the evolution of dioecy from heterostyly, but the severe pollen limitation may cause the breakdown of heterostyly into homostyly. To consider the evolutionary pathway of heterostylous plants, an accumulation of the empirical data is required demonstrating how phenological synchrony between plants and pollinators is decided and to what degree this relationship is stable over years, along with estimates of selection and gene flow in individual plants.  相似文献   

12.
Variation in annual flowering effort is described for 16 long datasets from 11 species of Chionochloa (Poaceae) in New Zealand. All populations exhibited extreme mast seeding. The most variable species was C. crassiuscula (coefficient of variation, CV=3.02) over 26 years at Takahe Valley, Fiordland, which is the highest published CV we know of worldwide. The other populations also had high CVs (lowest CV=1.42, mean CV=1.84) which were higher than for other well‐studied genera such as Picea, Pinus and Quercus. There were also frequent years of zero flowering (mean across all populations was 37.2% zero years; maximum 53% for C. rubra and C. crassiuscula over 19 years) whereas zero years are rare in other published masting datasets.Flowering was highly synchronous among species within a site (mean r=0.886), and also (though significantly less so) among sites. Among sites, synchrony was not significantly higher within‐species (mean r=0.711) than between‐species (r=0.690). Warm summer temperatures led to heavy flowering the following summer. Flowering synchrony increased with increasing synchrony in local deseasonalised summer temperatures, and decreased with increasing distance between sites.Mast seeding has been shown in Chionochloa to reduce losses to specialist flower or seed predators. Among‐species synchrony may be adaptive if species share a common seed predator. Developing seeds of at least 10 Chionochloa species are attacked by larvae of an undescribed cecidomyiid. In Takahe Valley, where masting is most pronounced, cecidomyiids attacked all six Chionochloa species in all four years studied. Mean annual losses were almost constant (10.0 to 13.4%) while flowering effort varied 100‐fold. The invariant losses are consistent with other evidence that the cecidomyiid may have extended diapause, which would make it harder to satiate by mast seeding. We hypothesise that one possible factor favouring such extremely high levels of mast seeding in Chionochloa is that its seed predator is very hard to satiate.  相似文献   

13.
  • Self‐pollination by geitonogamy is likely in self‐compatible plants that simultaneously expose a large number of flowers to pollinators. However, progeny of these plants is often highly allogamous. Although mechanisms to increase cross‐pollination have been identified and studied, their relative importance has rarely been addressed simultaneously in plant populations.
  • We used Rosmarinus officinalis to explore factors that influence the probability of self‐fertilisation due to geitonogamy or that purge its consequences, focusing on their effects on seed germination and allogamy rate. We experimentally tested the effect of geitonogamy on the proportion of filled seeds and how it influences germination rate. During two field seasons, we studied how life history and flowering traits of individuals influence seed germination and allogamy rates of their progeny in wild populations at the extremes of the altitudinal range. The traits considered were plant size, population density, duration of the flowering season, number of open flowers, flowering synchrony among individuals within populations and proportion of male‐sterile flowers.
  • We found that most seeds obtained experimentally from self‐pollination were apparently healthy but empty, and that the proportion of filled seeds drove the differences in germination rate between self‐ and cross‐pollination experiments. Plants from wild populations consistently had low germination rate and high rate of allogamy, as determined with microsatellites. Germination rate related positively to the length of the flowering season, flowering synchrony and the ratio of male‐sterile flowers, whereas the rate of allogamous seedlings was positively related only to the ratio of male‐sterile flowers.
  • Rosemary plants purge most of the inbreeding caused by its pollination system by aborting the seeds. This study showed that the rates of seed germination and allogamy of the seedlings depend on a complex combination of factors that vary in space and time. Male sterility of flowers, length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross‐pollination, therefore increasing germination and allogamy rates. Flowering traits appear to be highly plastic and respond to local and seasonal conditions.
  相似文献   

14.
Summary The response by male and female plants to herbivory was studied by experimental defoliation of the dioecious perennial herb Silene dioica in a green-house. Male and female plants were defoliated prior to and during the early flowering phase at two intensities (50% and 100% of leaf-area removed) in two consecutive years. Defoliation resulted in a decrease in the number of flowers initiated in both sexes, while a larger delay of peak flowering and a higher mortality was observed in males compared to females. In female plants, severe defoliation resulted in a reduction in seed number per capsule and in seed size compared to control. Females showed a negative correlation between the production of flowers in the first and second season in all treatments, while flowering in males the first season was not correlated with flowering in the second season. Females also showed a lower frequency of flowering than males during the two seasons studied. However, during the flowering period, males allocated significantly more biomass to flowers than did females. This outcome supports the idea that females may have a higher total reproductive expenditure than males, but males have a higher reproductive effort during flowering. Male rosette leaves were significantly preferred by the generalist herbivore Arianta arbustorum in experiments. This preference was most pronounced in trials with leaves from fertilized plants compared to nonfertilized plants. A greater storage of resources in aboveground leaves during winter by males compared to females may explain the higher preference for male leaves and the higher male mortality following early defoliation. Furthermore, males are smaller than females and may have a lower ability than females to replace lost resources needed for reproduction when defoliated early in the season.  相似文献   

15.
Flowering synchrony is essential for plant reproductive success, especially in the case of small‐sized populations of self‐incompatible species. Closely related to synchrony, flowering intensity influences pollinator attraction and pollinator movements. Thus, a high flowering intensity may increase pollinator attraction but, at the same time, may also increase the probability of geitonogamous pollinations. Depending on the mating system, the female fitness of plants in small populations may be affected by both the positive effects of higher flowering synchrony and pollinator attraction and the negative effects of geitonogamous pollinations induced by a high flowering intensity. It was hypothesized that different‐sized plants in a population would show contrasting flowering patterns, resulting in differences in pollinator behaviour. These influences could result in differences in mating and female reproductive success. This hypothesis was tested by studying the flowering pattern of Erodium paularense (Geraniaceae), a rare and endangered endemic of central Spain. The temporal distribution of flower production was explored throughout the reproductive season, and the probability of xenogamy and geitonogamy and their relationship to plant size and fitness components were calculated. The analysis of this partially self‐compatible species showed diverse flowering patterns related to different plant sizes. Small plants produced a larger number of seeds per fruit in spite of having lower values of flowering synchrony. By contrast, large plants produced a larger number of seeds from geitonogamous pollinations. The effect of different flower displays and outcrossing rates on seed set varied throughout the season in the different groups. Our findings highlight the relevance of individual plant size‐dependent phenology on female reproductive success and, in particular, on the relationship between flowering synchrony and fitness. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156 , 227–236.  相似文献   

16.
Continually flowering plants bloom continuously throughout the year, as often seen in plants distributed along the roadsides or in the understory layers in Southeast Asia's tropical rain forests. Dillenia suffruticosa (Griff. ex Hook. f. & Thomson) Martelli (Dilleniaceae) is one such continually flowering shrub that flowers during periods of community‐wide mass flowering, general flowering (GF), and non‐GF. During irregularly occurring GF periods, when species of all forest layers flower synchronously for several months, some pollinators migrate to the canopy layer, where GF promotes the pollination success of participating plants. Continually flowering plants share the available pollinator community with GF plants, and the reproductive success of continually flowering plants may be affected during the GF period. To assess the effects of GF on the reproductive success of a diverse range of continually flowering plants, we examined the differences in pollinator density and reproductive success between GF and non‐GF periods in D. suffruticosa at four different research sites. Although the seed set differed among the four research sites, pollinator density and fruit set did not differ between GF and non‐GF periods or research sites. Our results suggest that the reproductive success of D. suffruticosa was maintained at an approximately constant level, regardless of the flowering phenology of the canopy layer or other vegetation components.  相似文献   

17.
Although the dispersal of seeds around individual plants (the seed shadow) has frequently been characterized, the dispersion of seedlings around plants (the seedling shadow) has rarely been examined. We mapped 101 and 149 seedlings of the prairie compass plant (Silphium laciniatum) that appeared in our study area in 1987 and 1990 following mass flowering in 1986 and 1989. We also mapped the locations of flowering stems which appeared in 1986 and 1989 and recorded the number of flowerheads at each stem location. The frequency distributions of distance between a seedling and the nearest flowering stem were identical in the 2 years, with a median distance of 1.0 m. The large size and lack of wind-dispersal structures of compass plant seeds (achenes) are responsible for their limited dispersal. From estimates of the total seed production in the study area in 1986 and 1989, we calculated that about 1% of seeds became seedlings in each year. Flowering stem locations with a higher number of flowerheads had a significantly higher density of seedlings around them. This indicates that recruitment to compass plant populations is not a “lottery”; individual plants that produce more seeds produce, on average, more seedlings.  相似文献   

18.
Kjell Bolmgren  Peter D. Cowan 《Oikos》2008,117(3):424-429
Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=−7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants.  相似文献   

19.
The timing and abundance of flower production is important to the reproductive success of angiosperms as well as pollinators and floral and seed herbivores. Exotic plants often compete with native plants for space and limiting resources, potentially altering community floral dynamics. We used observations and a biomass-removal experiment to explore the effects of an invasive exotic flowering plant, Linaria vulgaris, on community and individual species flowering phenology and abundance in subalpine meadows in Colorado, USA. Invasion by L. vulgaris was associated with a shift in both the timing and abundance of community flowering. Invaded plant communities exhibited depressed flowering by 67% early in the season relative to uninvaded communities, but invaded sites produced 7.6 times more flowers than uninvaded sites once L. vulgaris began flowering. This increase in flowers at the end of the season was driven primarily by prolific flowering of L. vulgaris. We also found lower richness and evenness of resident flowering species in invaded plots during the period of L. vulgaris flowering. At the species level, a common native species (Potentilla pulcherrima) produced 71% fewer flowers in invaded relative to uninvaded plots, and the species had reduced duration of flowering in invaded relative to uninvaded sites. This result suggests that L. vulgaris does not simply alter the flowering of subordinate species but also the flowering of an individual common species in the plant community. We then used observational data to explore the relationship between L. vulgaris density and resident floral production but found only partial evidence that higher densities of L. vulgaris were associated with stronger effects on resident floral production. Taken together, results suggest that a dominant invasive plant can affect community and individual-species flowering.  相似文献   

20.
  • Flowering and fruiting are key events in the life history of plants, and both are critical to their reproductive success. Besides the role of evolutionary history, plant reproductive phenology is regulated by abiotic factors and shaped by biotic interactions with pollinators and seed dispersers. In Melastomataceae, a dominant Neotropical family, the reproductive systems vary from allogamous with biotic pollination to apomictic, and seed dispersal varies from dry (self‐dispersed) to fleshy (animal‐dispersed) fruits. Such variety in reproductive strategies is likely to affect flowering and fruiting phenologies.
  • In this study, we described the reproductive phenology of 81 Melastomataceae species occurring in two biodiversity hotspots: the Atlantic rain forest and the campo rupestre. We aim to disentangle the role of abiotic and biotic factors defining flowering and fruiting times of Melastomataceae species, considering the contrasting breeding and seed dispersal systems, and their evolutionary history.
  • In both vegetation types, pollinator‐dependent species had higher flowering seasonality than pollinator‐independent ones. Flowering patterns presented phylogenetic signal regardless of vegetation type. Fruiting of fleshy‐fruited species was seasonal in campo rupestre but not in Atlantic rain forest; the fruiting of dry‐fruited species was also not seasonal in both vegetation types. Fruiting showed a low phylogenetic signal, probably because the influence of environment and dispersal agents on fruiting time is stronger than the phylogenetic affinity.
  • Considering these ecophylogenetic patterns, our results indicate that flowering may be shaped by the different reproductive strategies of Melastomataceae lineages, while fruiting patterns may be governed mainly by the seed dispersal strategy and flowering time, with less phylogenetic influence.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号