首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the stem vasculature of the American climbing palm Desmoncus reveals structural features differing significantly from the Old World rattan genus Calamus . Desmoncus has a more directly continuous vascular system but nevertheless shows a vessel distribution that makes for high hydraulic resistance in the axial xylem. Desmoncus is like Calamus in having a single very wide metaxylem vessel in each central axial bundle and is also without direct vascular contact between protoxylem and metaxylem tracheary elements. However, in Desmoncus the stem vascular bundle system resembles that in tree palms (as has been described in the model palm Rhapis excelsa ) in having a continuing axial bundle that branches from each outgoing leaf trace together with a large number of bridge connections between leaf traces and peripheral axial bundles. Resistance to axial water transport is, however, evident in the narrowness of the continuing metaxylem elements in the peripheral stem vascular region. Desmoncus has scalariform perforation plates with few thickening bars in the metaxylem vessels, unlike the simple perforation plates found in Calamus . Thus, Desmoncus shows only limited convergence in stem vascular architecture toward the extreme modifications found in Calamus . This is not unexpected since it is clear that the climbing habit evolved independently in the two genera.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 142 , 243−254.  相似文献   

2.
The topologic arrangement of petiolar bundles varies within the length of the cottonwood petiole. Each petiolar bundle is formed by the subdivision and aggregation of acropetally differentiating subsidiary bundles in a predictable pattern. The subsidiary bundles provide vascular continuity between the stem and specific portions of the leaf lamina. Spot-labeling of individual veins with 14CO2, freeze substitution, and microautoradiography were used to establish the relation between the secondary veins of the lamina and the vasculature of the petiole. Within the petiole vasculature each subsidiary bundle was continuous with a specific portion of the lamina and seemed to have a separate function. Subsidiary bundles continuous with the central leaf trace were closely related functionally to the tip region of the lamina, while the subsidiary bundles continuous with the lateral leaf traces were functionally related to the middle and basal portions of the lamina.  相似文献   

3.
Primary shoot vasculature has been studied for 31 species of Pereskioideae and Opuntioideae from serial transections and stained, decorticated shoot tips. The eustele of all species is interpreted as consisting of sympodia, one for each orthostichy. A sympodium is composed of a vertically continuous axial bundle from which arise leaf- and areole-trace bundles and, in many species, accessory bundles and bridges between axial bundles. Provascular strands for leaf traces and axial bundles are initiated acropetally and continuously within the residual meristem, but differentiation of procambium for areole traces and bridges is delayed until primordia form on axillary buds. The differentiation patterns of primary phloem and xylem are those typically found in other dicotyledons. In all species vascular supply for a leaf is principally derived from only one procambial bundle that arises from axial bundles, whereas traces from two axial bundles supply the axillary bud. Two structural patterns of primary vasculature are found in the species examined. In four species of Pereskia that possess the least specialized wood in the stem, primary vascular systems are open, and leaf traces are mostly multipartite, arising from one axial bundle. In other Pereskioideae and Opuntioideae the vascular systems are closed through a bridge at each node that arises near the base of each leaf, and leaf traces are generally bipartite or single. Vascular systems in Pereskiopsis are relatively simple as compared to the complex vasculature of Opuntia, in which a vascular network is formed at each node by fusion of two sympodia and a leaf trace with areole traces and numerous accessory bundles. Variations in nodal structure correlate well with differences in external shoot morphology. Previous reports that cacti have typical 2-trace, unilacunar nodal structure are probably incorrect. Pereskioideae and Opuntioideae have no additional medullary or cortical systems.  相似文献   

4.
Climbing stems in the rattan genus Calamus can reach lengths of well over 100 m, are long-lived, and yet their vascular tissue is entirely primary. Such a combination suggests that stem vasculature is efficient and resistant to hydraulic disruption. By means of an optical shuttle and video recording of sequential images we analyzed the stem of a cultivated species. The stem has vascular features that are unusual compared with those in arborescent palms and seemingly inefficient in terms of long-distance water transport. Axial bundles are discontinuous basally because leaf traces, when followed downwards, always end blindly below. Furthermore, there is no regular distal branching of each leaf trace at its level of departure into a leaf, so that neither a continuing axial bundle nor bridges to adjacent axial bundles are produced as in the standard palm construction. Instead, the axial bundles in the stem periphery are connected to leaf traces and to each other by narrow and irregular transverse or oblique commissures that are not the developmental homologues of bridges. As in other palms, metaxylem within a leaf trace is not continuous into the leaf so that the only connection to a leaf is via protoxylem. Within the stem, protoxylem (tracheids) and metaxylem (vessels) are never contiguous, unlike in other palms, which suggests that water can only move from metaxylem to protoxylem, and hence into the leaf, across a hydraulic resistance. We suggest that this minimizes cavitation of vessels and/or may be associated with an unknown mechanism that refills embolized vessels. Also, the metaxylem can be significant in stem water storage in the absence of abundant ground parenchyma.  相似文献   

5.
The concept of a procambium-cambium continuum was examined in Populus deltoides by following its development in serially sectioned bud and stem tissues. As in other species, the term cambium is used to refer to that part of the continuum associated with the formation of secondary vascular tissues; i.e., with secondary growth. However, that part of the continuum associated with the formation of primary vascular tissues is subdivided to facilitate interpretation of the consecutive stages of primary xylem differentiation. Thus, the procambium as envisioned by other authors is subdivided into procambium, initiating layer, and metacambium, all of which develop acropetally and in complete continuity. The procambium is derived from the residual meristem in the form of acropetally developing strands and traces. The initiating layer is represented by the first, tangentially separated, periclinal divisions that delineate the position of the prospective cambium. The metacambium is a later stage during which additional periclinally dividing cells unite the initiating layer into a tangentially continuous meristem within a trace bundle. After establishment of the initiating layer, the procambial trace is completely phloem dominated. Protoxylem differentiation begins in an originating center at the base of the leaf primordium and it progresses basipetally to form the protoxylem pole. Cells of the initiating layer do not contribute to the formation of either protoxylem or protophloem. However, those cells of the initiating layer directly opposite the protoxylem pole divide precociously and later differentiate to metaxylem, thus forming a radial file of protoxylem-metaxylem elements. Protoxylem elements of lateral traces are longitudinally continuous with the protoxylem of their parent traces, whereas those of a central trace are longitudinally continuous with the metaxylem of its parent trace. Metaxylem is formed later than protoxylem and it is derived from the metacambium. Metaxylem does not form a continuous system with protoxylem of the same trace because of the different temporal and spatial origins of the two kinds of xylem. Rather, metaxylem is longitudinally continuous with secondary xylem of older traces below. An attempt was made to determine the functional significance of the pattern of protoxylem and metaxylem differentiation in relation to primary and secondary plant development.  相似文献   

6.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   

7.
The odd-pinnate leaves of Polyscias quilfoylei have a sheathing leaf base that completely encircles the stem. At each node, many traces depart the vascular cylinder and traverse an obliquely upward course through the leaf base before aggregating in the rachis. Lateral traces diverge from parent traces in the stem vasculature at variable times relative to the leaf they serve, from variable positions in the vascular cylinder and from parent traces of variable ages. The stem vasculature is formed by the coalescing of leaf traces from as many as five leaves. All bundles departing the vascular cylinder at a node to serve a leaf are true leaf traces originating independently in the stem. Leaf traces develop acropetally from their positions of origin on parent traces. Primordial leaves are first served by the median trace and later by lateral traces. Many traces were recognized in the internodes subtending embryonic leaves, but they could not be related either to a specific leaf or to a specific position within a leaf. Because these traces had not yet achieved contact with a primordial leaf site, they were assumed to be in the process of developing acropetally at the time of sampling. Observations suggest that the multiple traces in this species might perform a similar function of integrating the vascular cylinder that subsidiary bundles perform in certain uni- and trilacunar species.  相似文献   

8.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

9.
Empirical quantitative models were constructed for Populus deltoidesdescribing temporal and spatial changes in vessel characteristicsof metaxylem, both within individual central leaf traces andwithin all central leaf traces considered as a morphologicalunit at a given transverse level in the stem (the central tracesympodia). Similar models were constructed for secondary vesselcharacteristics. The growth processes of the stem segment throughwhich the vasculature extended were incorporated in these modelsto illustrate how a functional vascular system is maintainedin the stem as a whole. The central trace sympodia representedthe integrals of the temporal and spatial functions for individualcentral leaf traces. Metaxylem vessel production ceased in individualleaf traces two plastochrons before the cessation was reflectedin the central trace sympodia because of the integrative natureof the sympodial complex. A functional continuum of developmentwas apparent between metaxylem vessels of the central tracesympodia and secondary vessels of the stem. The transition betweenmetaxylem and secondary xylem production in the central tracesympodia corresponded with cessation of leaf and internode elongation. Populus deltoides Bartr. ex Marsh., cottonwood, primary xylem, secondary xylem, primary-secondary vascular transition, leaf growth, xylogenesis  相似文献   

10.
BELL  A. D. 《Annals of botany》1976,40(2):241-250
The leaf trace system in the region of congested internodesat the base of Lolium multiflorum is described. A typical major trace in a leaf consists of a collateral bundlehaving a double bundle sheath and incorporating a certain amountof sclerenchyma. As such a leaf trace is followed down intothe stem it increases in diameter, loses the inner (mestome)bundle sheath, and the xylem becomes associated with xylem transfercells. Lower down, the bundle diameter is reduced although nowit has become amphivasal. The internal xylem only is still associatedwith transfer cells. The proximal portions of the bundle aremuch reduced, transfer cells, mestome sheath, and sclerenchymaare lacking and the now insignificant bundle merges with a lowerleaf trace or some other vascular tissue. Such a bundle in thestem may be in direct contact via bridges with other leaf traces,with the nodal plexus, and with the peripheral plexus that surroundsthe inner leaf trace system. In the base of a typical young plant, approximately one-halfof all leaf traces, including all the median veins, join bundlesfrom the next oldest leaf. Approximately one-third join thenodal plexus, and the remainder variously join bundles fromthe same or next but one oldest leaf to join the peripheralplexus. The differentiation of tiller insertions into the pre-existingmain stem system is highly variable. In a very young tillera number of traces were seen to terminate before the main systemwas reached suggesting basipetal differentiation. The actualconnections made by the tiller traces may occur with any nearbyleaf trace, the nodal plexus, or with the peripheral plexus.Later differentiating leaf traces in a tiller join leaf tracesof the tiller itself. Occasional bundles from secondary tillers by-pass the vasculartissue of the primary tiller to join directly with that of theparent plant. Vascular connections between parent and tiller,although very variable, appear to be totally comprehensive froma functional standpoint.  相似文献   

11.
Leaves of Gleditsia triacanthos L. are served by three leaf traces that subdivide in the node to produce subsidiary bundles. The subsidiary bundles differentiate basipetally in the stem and acropetally in the petiole using the original leaf trace bundles (those that developed acropetally) as templates for their development. Within the pulvinus, the acropetal bundle components merge to form the rachis vasculature consisting of a semicircular arc and a ventral chord; several small bundles diverge to form ventral ridge bundles. Mixing of bundles occurs during vascularization of the lateral rachillae axes. Each diverging rachilla axis receives bundles from the semicircular arc, the ventral chord, and a ridge bundle in a relatively reproducible and predictable pattern. During this process the main rachis vasculature is gradually depleted, but the ridge bundles are reconstituted following divergence of each rachilla pair. The distal rachilla pair is vascularized by a bilateral partitioning of the entire rachis vasculature; a remnant of the central leaf trace terminates in a subulate terminal appendage. Vascularization of the bipinnate G. triacanthos leaf is compared to that of the simple Populus deltoides leaf.  相似文献   

12.
BELL  A. D. 《Annals of botany》1976,40(2):251-259
The interconnecting system of leaf traces constitutes only afraction of the vascular tissue found in the base of a ryegrassstem. The tillers and nodal roots have their insertion in thiscongested region of the plant in addition to the majority ofthe leaf traces. Study of the attachment of nodal roots revealsthe extensive differentiation of vascular tissue in a perforatedcylinder surrounding the inner leaf trace system—the peripheralplexus. This plexus consists of two components, the diffuse bundlesorientated along the stem axis, and interconnected with theroot girdles orientated around the stem axis. The peripheralplexus which is bounded externally by a mestome sheath, makesnumerous contacts with the leaf trace system within it, bothdirectly and via the nodal plexi, and receives the vascularattachment of all the nodal roots. It appears in the stem atabout the same time as adjacent nodal roots, and differentiatesfrom meristematic tissue totally independently of the leaf tracesystem. The diffuse bundles themselves apparently differentiateacropetally in this meristematic tissue and are augmented bybranches from leaf traces and the nodal plexi. The integrated vascular systems of leaf, stem, and root at thebase of the grass plant, bounded by a mestome sheath, must allowtotal intercommunication between all organs. Nearly all tissuewithin the mestome sheath is vascular in nature and it is intothis vascular tissue that the leaf traces associated with transfercells are inserted.  相似文献   

13.
We conducted a comparative anatomical study of the petiole of 16 taxa belonging to the tribe Sorbarieae (Rosaceae) (Adenostoma, 2 spp.; Chamaebatiaria, 1 sp.; Sorbaria, 6 spp., 3 vars., and 1 forma; and Spiraeanthus, 1 sp.) and the related genus Lyonothamnus (1 sp. and 1 ssp.). The distal, medial and proximal regions of petioles were transversely sectioned using conventional embedding and staining methods. Cuticles, crystals, trichomes and pericyclic fiber patterns were observed and studied. Three types of vascular nodal patterns were recognized: Type 1 was seen in Chamaebatiaria, Lyonothamnus, and Spiraeanthus (simple‐trace nodal pattern with slightly curved or U‐shaped vascular bundle); type 2 was found in Adenostoma (multiple‐traces nodal pattern with free vascular bundles); and type 3 was unique to Sorbaria (bundles fused to form a siphonostele nodal pattern). Some petiolar anatomical characteristics (e.g. cuticles, crystals, trichomes, vascular nodal pattern, and pericyclic fiber patterns) were found to provide useful information for taxonomic studies within Sorbarieae. On the basis of these characteristics, a dichotomous key for identification at the generic/specific level is provided. We also report a structural change in the vascular bundles from the stem‐leaf transitional zone to the leaf medial zone.  相似文献   

14.
Organization of the stem vascular system was analyzed in Victoria species and Euryale ferox. The stem vascular system consists of a number of concentrically-organized continuing axial stem bundles. At the node each leaf is supplied with a root trace, two lateral leaf traces, and a median leaf trace. A peduncle fusion bundle is also present at each node. The peduncle fusion bundle supplies vascular tissue to the median leaf trace and to the peduncle trace. Flowers are nonmedian axillary but have specific vascular, spatial, and developmental relationships to leaves in a manner that resembles the genus Nymphaea. On the basis of the analysis of the stem vascular system, Victoria and Euryale are more similar to each other than to Nymphaea. However, the vascular system in Victoria and Euryale is similar enough to Nymphaea to suggest that Nymphaea, Victoria, and Euryale form a natural taxon of unique angiosperms. The organization of the stem vascular system in Victoria and Euryale is dicotyledonous.  相似文献   

15.
In species of Casuarina with multileaved whorls, each stem vascular bundle divides radially into two at the site of a leaf trace separation, and the same two bundles rejoin acropetally to where the trace supplies a leaf. Such divisions are divisions of a single vascular bundle, and the rejoining of bundles forms a single bundle. Proposals that the extant primary vascular systems of dicotyledons may have been derived as in conifers are incorrect in so far as Casuarina is concerned, or the system has evolved beyond that so far proposed for dicotyledons. Reasons are offered, however, for considering that fernlike leaf gaps are not present. Leaf traces supply leaves at the first nodes distal to their origins. The ways by which an increase or decrease of stem bundles occur are described. Phyllotactic patterns range from helical (rare) to whorled. In the embryo, where leaves occur decussately, of certain species with multileaved whorls, and in the shoot apices of species with tetramerous whorls, slight differences in the levels of leaf attachments and the bending of leaf traces indicate the probable evolution of extant whorled phyllotaxies from one or more helical arrangements. Stages in the evolution are suggested. The leaves in most species with multileaved whorls are in true whorls. The original periderm of branchlets lies internally to the internodal traces and chlorenchyma, but is otherwise external to the vascular system. It is concluded that each leaf originates at its level of separation from the axis despite several structural features suggesting that the leaf bases have become congenitally adnate to the stem.  相似文献   

16.
The primary vascular system of 23 species belonging to 18 genera of conifers with helical phyllotaxis has been investigated with the intent of determining the architecture of the system. Special attention has been given to nodal and subnodal relations of the vascular bundles. The vascular system seems to be composed solely of relatively discrete sympodia, that is, axial vascular bundles from which leaf traces branch unilaterally. Although the discreteness of the sympodia is not immediately apparent because of their undulation and lateral contacts with neighboring ones, close examination, including a statistical analysis of the tangential contacts, seems to reveal that each sympodium maintains its identity throughout. Although two traces may be apparent at nodal levels, the trace supply to a leaf originates, in all species, as a single bundle. An analysis is made of the relationship between the vasculature and the phyllotaxis. It is observed that the direction of trace divergence can be accurately predicted when the direction of the ontogenetic spiral, the angle of divergence of leaf traces, and the number of sympodia are known.  相似文献   

17.
Bursting terminal buds and subtending stems of Populus deltoides Bartr. ex Marsh. plants were examined at several stages to determine the pattern of xylary union between the 1st- and 2nd-yr growth increments. Metaxylem vessels differentiated first in traces serving the basalmost leaf in the bud. As successively younger leaves began growth, metaxylem vessels differentiated in their traces. The site of metaxylem reactivation was in the second or third internode beneath the bud (i.e., in the 1st-yr stem), and subsequent differentiation progressed bidirectionally in each set of traces as the leaves they served expanded. Traces leading either to abscised leaf positions on the 1st-yr stem or to bud-scale leaf positions were reactivated by the tangential “spread” of activity from adjacent traces serving expanding leaves. The new elements were all secondary xylem vessels, as were those of the basipetal trace components, although they were functionally continuous with the metaxylem vessels that differentiated acropetally. Xylem fibers were initiated in the same position and differentiated in the same sequence as vessels. However, fiber differentiation lagged behind that of vessels. Whereas vessel differentiation was associated with leaf expansion, fiber differentiation was associated with leaf maturation. As each leaf matured in sequence, the primary-secondary transition zone advanced acropetally to the bud base and then in the new shoot until it attained a positional relation with leaf maturation comparable to that of 1st-yr plants.  相似文献   

18.
The Control of Vascular Branching in Coleus 2. The Corner Traces   总被引:1,自引:0,他引:1  
Corner trace connections are less well defined than those ofthe side bundle in Coleus, the locations of branch points, branchpartners, and number of connections made by a corner trace beingmore variable. The auxin balance between corner traces was alteredby leaf removal and by application of exogenous auxin. Branchingof new strands was shifted toward the pre-existing strand withthe lower auxin flux, but only within a narrow range of developmentalstages and with the imposition of a large auxin imbalance. Branchingoccurred only in nodal regions, as in control plants. Thus,auxin balance can be made to control xylem strand branching,but it does not account fully for the control of vascular branchingin intact plants. In the intact pattern, corner trace branchesappear to be directed toward the pre-existing strand with thehigher auxin flux. It is proposed that, in the vicinity of astrand with high flux, auxin is transported laterally withinthe nodal vascular cambium, facilitating vessel differentiationbetween strands in the derivatives of the vascular cambium.These vessels comprise the connections between traces. Coleus, vascular differentiation, vascular anatomy, vascular branching, vascular patterns, auxin, auxin balance, node  相似文献   

19.
The aerial stem of Prionium has been studied by motion-picture analysis which permits the reliable tracing of one among hundreds of vascular strands throughout long series of transverse sections. By plotting the path of many bundles in the mature stem, a quantitative, 3-dimensional analysis of their distribution has been made, and by repeating this in the apical region an understanding of vascular development has been achieved. In the mature stem axial continuity is maintained by a vertical bundle which branches from each leaf trace just before this enters the leaf base. Lateral continuity results from bridges which link leaf traces with nearby vertical bundles. Development of the provascular system involves a meristematic cap into which the blind ends of vertical bundles can be followed. Leaf traces are produced continuously in association with developing leaf primordia for a period of over 30 plastochrones; they connect with the vertical bundles in the meristematic cap and so establish the essential vascular configuration which is later reorientated through about 90° by overall growth of the crown. The last bundles to differentiate from the leaf do so outside the meristematic cap and thus fail to make contact with the axial system; they appear in the mature axis as blind-ending cortical bundles. Prionium is only distantly related to palms and its vascular histology is quite different. Nevertheless, the course of vascular bundles and the origin of this pattern in the stem resembles that of a palm. It is suggested that we are examining the fundamental pattern of vascular development in large monocotyledons.  相似文献   

20.
The leaf and stem of the potato plant (Solanum tuberosum L. cv. Russet Burbank) were studied by light microscopy to determine their morphology and vasculature; scanning electron microscopy provided supplemental information on the leaf's morphology. The morphology of the basal leaves of the potato shoot is quite variable, ranging from simple to pinnately compound. The upper leaves of the shoot are more uniform, being odd pinnate with three major pairs of lateral leaflets and a number of folioles. The primary vascular system of the stem is comprised of six bundles, three large and three small ones. The three large bundles form a highly interconnected system through a repeated series of branchings and arch-producing mergers. Two of the three large bundles give rise to short, lateral leaf traces at each node. Each of the small bundles in the stem is actually a median leaf trace which extends three internodes before diverging into a leaf. The three leaf traces enter the petiole through a single gap; thus the nodel anatomy is three-trace unilacunar. Upon entering the petiole, each of the laterals splits into an upper and a lower lateral. Whereas the upper laterals diverge entirely into the first pair of leaflets, the lower laterals feed all of the lateral leaflets through a series of bifurcations. Prior to their entering the terminal leaflet, the lower laterals converge on the median bundle to form a single vascular crescent which progresses acropetally into the terminal leaflet as the midvein, or primary vein. In the midrib, portions of the midvein diverge outward and continue as secondaries to the margin on either side of the lamina. Near the tip of the terminal leaflet, the midvein consists of a single vascular bundle which is a continuation of the median bundle. Six to seven orders of veins occur in the terminal leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号