首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fruits, catkins, and associated leaves of at least two extinct trigonobalanoid taxa have been discovered at an Oligocene fossil plant locality rich in fagaceous remains. These fossils exhibit a mosaic of fruit and pollen characters found in the two extant subfamilies Castaneoideae and Fagoideae of Fagaceae. Comparison with cladograms based on modern taxa suggests that these extinct taxa were similar to the ancestors of subfamily Fagoideae and may have been intermediate between Fagus and the modern trigonobalanoid genera. Pollen types isolated from the fossil staminate catkins provide unique character states that are transitional between modern pollen types in Fagaceae and are important in understanding the evolution of exine micromorphology within the family. This analysis provides a striking example of the use of character data from fossils to determine character-state adjacency prior to polarization of characters using outgroup comparison. Because of the mosaic nature of their character complexes, these fossils support monophyly in both the family Fagaceae and the subfamily Fagoideae. In addition, the occurrence of trigonobalanoid fossils in the Oligocene of North America has interesting biogeographic implications and provides insights into the nature of North American Fagaceae during the Tertiary.  相似文献   

2.
Fossil evidence of Fagaceae from the Paleocene/Eocene boundary of western Tennessee is described and discussed. These fossils include a newly discovered pistillate inflorescence and dispersed fruits of subfamily Castaneoideae as well as a taxon that resembles modern trigonobalanoids (pistillate inflorescences and dispersed mature fruits). Fossil staminate catkins with fagaceous pollen, which we suggest may be conspecific with the trigonobalanoid infructescences, are also found at the locality. Two distinct types of fagaceous leaves are present at the locality. The reproductive structures are the oldest megafossils unequivocally assignable to Fagaceae and represent the oldest remains of subfamily Fagoideae and the oldest megafossil remains of Castaneoideae. In addition, the fossils provide insights into the chronology of diversification, biogeography, and phylogeny of Fagaceae. The trigonobalanoid remains may also provide insights into the timing and circumstances of the evolution of wind pollination in Fagaceae.  相似文献   

3.
Three specimens of one type of fossil catkin from the Middle Eocene of Tennessee are excellently preserved and have been investigated morphologically. The flowers on these catkins are subtended by elongate, three-lobed bracts, are exclusively staminate, and have three conspicuous, obovate, perianth parts that bear large peltate scales. The stamens are well preserved and contain triporate pollen grains that are equivalent to the dispersed pollen genus Momipites. Floral morphology, cuticular features, and pollen indicate close affinities with the extant genera Engelhardia, Oreomunnea, and Alfaroa of the Juglandaceae; but because the fossil catkins are distinct and are a dispersed plant organ, they are placed in a new form genus: Eokachyra. These fossil flowers represent a rare opportunity to correlate the micro- and macrofossil record and to compare the relative rates of evolution of these features. The fossil catkins also demonstrate that much structural information may be gained from the study of fossil angiosperm flowers. The similarities between the staminate flowers of the fossil catkins and the staminate flowers of Engelhardia, Oreomunnea, and Alfaroa confirm the idea that this complex has had a long evolutionary history and suggest that the pollination system of certain extant genera was well developed during Middle Eocene times.  相似文献   

4.
We report on the leaves, fruits, inflorescences, and pollen of two fossil species in the genus Platycarya. The association of these dispersed organs has been established by their repeated co-occurrence at a large number of localities, and for two of the organs (fruit and pistillate inflorescence, and pollen and staminate inflorescence) by apparent organic attachment of compression fossils. Each of the two species can be distinguished by characteristics of all the known megafossil organs. We also review the fossil record of dispersed platycaryoid fruits and inflorescences, recognizing three additional species of Platycarya and two of Hooleya. Two of the fossil Platycarya species are morphologically very different from the living Platycarya strobilacea Sieb. et Zucc., but they show the diagnostic features of the genus. Hooleya is a generalized member of the Platycaryeae that is probably close to the ancestry of Platycarya. The two Platycarya species known from multiple organs provide a remarkable example of mosaic evolution in which fertile and foliar structures have attained different levels of morphological specialization. The leaves, often considered the most plastic of plant organs, retain several features that are otherwise seen only in the Engelhardieae. These similarities in leaf architecture between the fossil Platycarya species and Engelhardieae are advanced features for the Juglandaceae, and thus indicate a sister-group relationship between the two lines. In contrast to the leaves, the fruits, inflorescences, and pollen of the fossil Platycarya species are almost as specialized as those of the extant P. strobilacea and bear little resemblance to the same structures in other genera of the family. The morphology, taphonomy, sedimentary setting, and geographic and stratigraphic distribution of three of the fossil platycaryoid species suggest that they were wind-dispersed, early successional plants that grew in thickets. This habit is retained by Platycarya strobilacea and is typical of many of the amentiferae (e.g. Myricaceae, Betulaceae). The r-selected life-history pattern of the Platycarya line may well have contributed to its low diversity through geologic time.  相似文献   

5.
Fossilized pistillate inflorescences, fruits, and pollen grains from the Turonian (~90 million years before present) of New Jersey are described as a new genus, Microaltingia, in the family Hamamelidaceae. The fossils are remarkably preserved in exceptional detail. Several morphological and anatomical characters suggest affinities with Hamamelidaceae. These include capitate inflorescences, florets with a hypanthium, two-carpellate gynoecia, perigynous flowers, tricolpate reticulate pollen, a three-layered carpel wall, scalariform perforation plates with oblique end walls, and scalariform and opposite/alternate intervascular pitting. The gross morphology of pistillate inflorescences, unisexual flowers, phyllome structure, numerous ovules per carpel, and mode of carpel dehiscence indicate affinities with subfamily Altingioideae, which includes the modern genera Liquidambar and Altingia. Cladistic analysis using a previously published morphological matrix and scoring the fossil for available characters supports the position of the fossil as a sister taxon of modern Altingioideae. Although the fossil exhibits a mosaic of characters found within modern Hamamelidaceae, it is not identical to any modern taxon. Based on cladistic analysis, the fossil appears to be a basal "altingioid" that lacks the derived pollen found in extant Altingioideae and retains the more plesiomorphic tricolpate pollen found in the rest of Hamamelidaceae. The floral characters of the fossils, including phyllomes with stomata, short and straight styles, and small perprolate pollen grains, also indicate the possibility of insect pollination.  相似文献   

6.
A new fossil flower and inflorescence-bearing locality has been discovered in the Oligocene of the Texas Gulf Coast. The new flora is similar to the Middle Eocene Claiborne Flora of the southeastern USA, but the quality of preservation is sometimes better in the Oligocene fossils. One component of the new flora, a mimosoid legume inflorescence, appears identical with Eomimosoidea plumosa, first reported from the Claiborne Formation of western Tennessee. Investigations of these younger specimens indicate that the taxon had changed little during the Middle Eocene-Oligocene interval, and the better quality of preservation of the Texas specimens has provided further insights into the structure of the fossils. Comparisons of the fine structural details of the pollen of Eomimosoidea with similar pollen of extant mimosoids has confirmed that the fossil genus is indeed extinct and suggests that tetrahedral tetrads of columellate, tricolporate pollen grains are ancient, possibly primitive, in the Mimosoideae.  相似文献   

7.
Six examples of a spicate inflorescence from the Middle Eocene Claiborne Formation in western Tennessee have been investigated. Individual flowers are small, alternately arranged, nearly sessile, and perfect. The style protrudes 2 mm beyond the floral envelope and terminates in a slightly swollen, rounded stigma. Both the style and the stigma are hairy. Ten stamens are exserted and extend 5 mm beyond the floral envelope. Anthers are small, versatile, and dehisce longitudinally. Pollen grains are tricolporate, tectate, and are in permanent tetrahedral tetrads 32 μm in diameter. Comparison of the fossil inflorescences with those of extant families having multiple pollen grain configurations suggests that the fossil inflorescences are most closely allied to the subfamily Mimosoideae of the Leguminosae. These are the first structurally documented remains of the Mimosoideae from the Middle Eocene.  相似文献   

8.
Fossil pollen of Diporites aspis Pocknall & Mildenhall, from the early Miocene of New Zealand, was examined by combined light, scanning, and transmission electron microscopy, in order to determine its relationship to extant Fuchsia pollen. Based on overall morphology, exine structure, exine surface sculpture, viscin thread morphology, and apertural features, the fossil pollen definitely can be considered to represent Fuchsia. Parallel studies of extant Fuchsia pollen indicate that a more precise identification of the fossils is not possible. With the examination of additional fossil material, it should be possible to learn a great deal about the timing of origin and migration of the genus Fuchsia, but not of its constituent parts.  相似文献   

9.
Fossilized flowers of ericalean affinity are reported from the Turanian (ca. 90 MYBP, million years before present) of New Jersey. The fossils are remarkably well preserved and three-dimensional, and are the oldest known floral remains of Ericales. The series of fossil flower buds, floral fragments, and fruits are not identical to any modern genus of Ericales. The inverted U-shaped anthers with pseudoterminal awns, and the fluted syncarpous ovary of the fossils suggest affinities with basal Ericaceae, probably near extant Enkianthus, a taxon that also shares monadinous pollen with the fossil. Pollen grains were observed clumped on a stigma in one of the fossil flowers. Fossilized acid-resistant strands having characteristics, including similar diameter and sculpture pattern, in common with the muri connect pollen grains and, with scanning electron microscopy, appear continuous with the tectum, supporting the interpretation that they are viscin threads. These are the oldest reported fossilized viscin threads, and the only fossilized viscin threads found in situ in flowers. In modern Ericales and Onagraceae, the presence of viscin threads is associated with highly specific plant-pollinator relationships, raising the possibility that such specific pollinator-plant relationships had developed by the mid-Cretaceous. This is consistent with floral characters in these ericalean fossils, the presence of advanced meliponine bees in slightly younger sediments from the same region, and with the morphology and affinities of other fossil flowers from the same sediments.  相似文献   

10.
During Late Cretaceous to Oligocene times, fossil pollen of the Triprojectacites group (also known as Aquilapolles or triprojectates), comprised a temporally and environmentally distinctive element of palynofloras in eastern Asia and western North America. Several species of this group serve as biostratigraphic index fossils for this interval. Using electron microscope and numerical analyses, primarily of North American triprojectate pollen, it is possible to recognize the presence of three distinct subgroups. One group, corresponding to the fossil genus Mancicorpus, has no morphologically close modern representative. Characters resembling those in Santalaceae (Santalales, Rosidae) occur in the second group, which is represented by a previously underscribed fossil triprojectate genus. The third group contains retipilate, isopolar pollen and strioreticulate, isopolar pollen. Forms exhibiting the latter morphology are commonly assigned to the genus Integricorpus, while the retipilate morphology characterizes another underscribed genus. This third group may have some phylogenetic connection to Apiaceae (Apiales, Asteridae). Pollen of some other extant families exhibits triprojectate features, although no close fossil representative can be presently identified. The triprojectate morphology is thus interpreted in modern and fossil forms as resulting from convergence rather than close phylogenetic relationships at the group level.  相似文献   

11.
Both the fossil record and molecular data support a long evolutionary history for the Araceae. Although the family is diverse in tropical America today, most araceous fossils, however, have been recorded from middle and high latitudes. Here, we report fossil leaves of Araceae from the middle-late Paleocene of northern Colombia, and review fossil araceous pollen grains from the same interval. Two of the fossil leaf species are placed in the new fossil morphogenus Petrocardium Herrera, Jaramillo, Dilcher, Wing et Gomez-N gen. nov.; these fossils are very similar in leaf morphology to extant Anthurium; however, their relationship to the genus is still unresolved. A third fossil leaf type from Cerrejón is recognized as a species of the extant genus Montrichardia, the first fossil record for this genus. These fossils inhabited a coastal rainforest ~60-58 million years ago with broadly similar habitat preferences to modern Araceae.  相似文献   

12.
Fossil pollen believed to be related to extant Hagenia abyssinica were discovered in the early Miocene (21.73 Ma) Mush Valley paleoflora, Ethiopia, Africa. Both the fossil and extant pollen grains of H. abyssinica were examined with combined light microscopy, scanning electron microscopy, and transmission electron microscopy to compare the pollen and establish their relationships. Based on this, the fossil pollen grains were attributed to Hagenia. The presence of Hagenia in the fossil assemblage raises the questions if its habitat has changed over time, and if the plants are/were wind pollinated. To shed light on these questions, the morphology of extant anthers was also studied, revealing specialized hairs inside the anthers, believed to aid in insect pollination. Pollen and anther morphology are discussed in relation to the age and origin of the genus within a molecular dated phylogenetic framework, the establishment of complex topography in East Africa, other evidence regarding pollination modes, and the palynological record. The evidence presented herein, and compiled from the literature, suggests that Hagenia was an insect‐pollinated lowland rainforest element during the early Miocene of the Mush Valley. The current Afromontane habitat and ambophilous (insect and wind) pollination must have evolved in post‐mid‐Miocene times.  相似文献   

13.
Palms are a monophyletic group with a dominantly tropical distribution; however, their fossil record in low latitudes is strikingly scarce. In this paper, we describe fossil leaves, inflorescences, and fruits of palms from the middle to late Paleocene Cerrejón Formation, outcropping in the Ranchería River Valley, northern Colombia. The fossils demonstrate the presence of at least five palm morphospecies in the basin ca. 60 Ma. We compare the morphology of the fossils with extant palms and conclude that they belong to at least three palm lineages: the pantropical Cocoseae of the subfamily Arecoideae, the monotypic genus Nypa, and either Calamoideae or Coryphoideae. The fossil fruits and inflorescences are among the oldest megafossil records of these groups and demonstrate that the divergence of the Cocoseae was more than 60 Ma, earlier than has previously been thought. These fossils are useful in tracing the range expansion or contraction of historical or current neotropical elements and also have profound implications for the understanding of the evolution of neotropical rainforests.  相似文献   

14.
The fossil history of the Fagaceae from China and its systematic and biogeographic implications are discussed based on revisionary studies of the fossil records. No creditable macrofossil record of the Fagaceae exists in the Cretaceous deposits and all the Cretaceous microfossil reports remain equivocal and require further study. The Paleocene fossils show the appearance and diversification of the two groups corresponding to the subfamilies Fagoideae and Castaneoideae sensu Nixon. By the Eocene, all modern genera had been present. The oldest fagaceous fossils represent subfamily Fagoideae with affinities to the extant genus Trigonobalanus. The leaf fossil genus Berryophyllum, with affinities to Quercus subg. Cyclobalanopsis, has been documented by the early Eocene and might have occurred earlier than other fossils assignable to Quercus. The appearance of evergreen sclerophyllous Ouercus with entire leaves might have occurred earlier than those with toothed leaves. Deciduous, urticoid-leaved oak fossils (Quercus subg. Quercus sect. Quercus) had not appeared until the Miocene. Fossil equivalents of Trigonobalanus, Castanopsis and Lithocarpus had occurred in Europe and North America by the early Tertiary, suggesting that continuous distributions were achieved via the northern hemisphere land bridges. Three groups of evergreen sclerophyllous oaks of apparent close phylogenetic relationships occurred in the Hengduan mountains, the Mediterranean area and northwestern North America. Their fossil forms have become dominant elements of those vegetation zones since the Miocene. A shared fossil history indicates a possible biogeographic boundary formed by the ancient Mediterranean. The evidence suggests that the oaks might arrive in North America during two distinct geologic periods: evergreen sclerophyllous entire-leaved oaks appeared by the Early Tertiary, whereas thedeciduous oaks with urticoid leaves appeared in the Late Tertiary.  相似文献   

15.
Inflorescences from the Claiborne Formation of western Tennessee are remarkably similar to those of the tribe Hippomaneae, subfamily Euphorbioideae, of the Euphorbiaceae. The fossil inflorescences are spikes of bract-subtended cymules of at least three florets each. Florets are composed of at least three stamens. Palynological features of the fossils are also shared by the Hippomaneae. Fossil pollen is tricolporate, prolate (26.9 × 20.6 μm; P/E = 1.3), with lalongate pores. Exine structure is tectate columellate with a perforate tectum. The exine is reticulate and the muri are conspicuously striate. These specimens represent the first fossil floral evidence of the Euphorbiaceae. It is surprising that inflorescences of the Hippomaneae so modern in aspect existed in the Middle Eocene, since the tribe is universally considered to be one of the most advanced in the family.  相似文献   

16.
As a well-preserved juvenile and the type specimen of Australopithecus africanus, the Taung child figures prominently in taxonomic, ontogenetic, and phylogenetic analyses of fossil hominins. Despite general agreement about allocation of Sterkfontein and Makapansgat fossils to this species, limited morphological comparisons have been possible between these adult specimens and the juvenile Taung. Here, we used developmental simulation to estimate the adult form of the Taung child, and directly compare its morphology to that of other fossil hominins. Specimens were represented by 50 three-dimensional landmarks superimposed by generalized Procrustes analysis. The simulation process applied developmental trajectories from extant hominine species to the Taung fossil in order to generate its adult form. Despite differences found in the developmental patterns of these modern species, simulations tested on extant juveniles-transforming them into "adults" using trajectories from other species-revealed that these differences have negligible impact on adult morphology. This indicates that morphology already present by occlusion of the first permanent molar is the primary determinant of adult form, thereby supporting use of extant trajectories to estimate the morphology of an extinct species. The simulated Taung adult was then compared to other adult fossils. As these comparisons required assumptions about the pattern and magnitude of developmental change, additional analyses were performed to evaluate these two parameters separately. Results of all analyses overwhelmingly rejected the possibility that the Taung child was a juvenile robust australopith, but were consistent with the hypothesis that the Taung and Sterkfontein fossils are conspecific. Between Sts 5 and Sts 71, the latter is more likely to resemble the adult form of the Taung child.  相似文献   

17.
Specimens showing staminate and pistillate inflorescences attached to branches bearing Fagopsis longifolia (Lesq.) Hollick foliage, from the Oligocene Florissant flora of Colorado, permit a relatively complete characterization of the extinct Fagopsis plant. The alternately arranged simple leaves have pinnate craspedodromous venation and prominent simple teeth. Staminate inflorescences are globose on a stout peduncle and contain anthers with tricolporate pollen. Pistillate inflorescences are ovoid heads with compact, helically arranged three-flower units and are interpreted to have three styles per flower. The infructescence consists of small wedge-shaped cupules, each containing three tiny fruits, and subtended by a persistent bract. The cupules unravel from the swollen peduncle at maturity and are often dispersed as strings of adhering fruit-wedges which frequently take on a regular, more or less circular appearance. Fagopsis is unlike any living genus but has characters which support a relationship to the Fagaceae. Unlike extant members of the family, which typically have fruits adapted for animal dispersal, Fagopsis is less obviously specialized and perhaps adapted for wind dispersal. The striking differences in fruiting structures between Fagopsis and extant Fagaceae parallel the differences between the extant genera Platycarya and Juglans in the Juglandaceae, and Alnus and Corylus in the Betulaceae.  相似文献   

18.
濒危植物长柄双花木的花部综合特征与繁育系统   总被引:33,自引:1,他引:33       下载免费PDF全文
 通过野外观察,运用杂交指数、花粉-胚珠比、人工授粉和套袋实验及等位酶电泳等方法,对长柄双花木(Disanthus cercidifolius Maxim. var. longipes H. T. Chang)自然种群和人工种群的开花状态、繁育系统进行了研究。结果如下:该种单花花期一般6~7 d,开花过程中柱头始终高于花药的位置,花药散粉具有先后顺序,一般2花药先散粉,其余3花药滞后1~2 d。单花花期依其形态和散粉时间可分为5个时期:即散粉前期、散粉初期、散粉盛期、凋谢期。种群开花一般历时49~55 d,但不同地点、年份之间有所差异,推测开花持续时间不同主要是环境条件所致。由于其杂交指数大于4,花粉-胚珠比等于1 250,结合人工套袋和授粉实验以及等位酶电泳结果可以确定该种的繁育系统属于异交为主,部分自交亲和,传粉过程需要传粉者。花粉竞争可能是导致该种濒危的主要的生殖生物学原因。  相似文献   

19.
Investigations of small permineralized flowers from the Middle Eocene Princeton Chert, British Columbia, Canada have revealed that they represent an extinct species of Saururus. Over 100 flowers and one partial inflorescence were studied, and numerous minute perianthless flowers are borne in an indeterminate raceme. Each flower is subtended by a bract, and flowers and bracts are borne at the end of a common stalk. Five stamens are basally adnate to the carpels. Pollen is frequently found in situ in the anthers. Examined under SEM and TEM, pollen grains are minute (6-11 μm), monosulcate, boat-shaped-elliptic, with punctate sculpturing and a granulate aperture membrane. The gynoecium is composed of four basally connate, lobed carpels with recurved styles and a single ovule per carpel. Flower structure and pollen are indicative of Saururaceae (Piperales), and in phylogenetic analyses using morphological characters, the fossils are sister to extant Saururus. The fossil flowers are described here as Saururus tuckerae sp. nov. These fossil specimens add to the otherwise sparse fossil record of Piperales, represent the oldest fossils of Saururaceae as well as the first North American fossil specimens of this family, and provide the first evidence of saururaceous pollen in the fossil record.  相似文献   

20.
The pollination biology of Norantea brasiliensis (Marcgraviaceae) was studied in the rain forest of southeastern Brazil. This plant presents bizarre, brush-type racemous inflorescences bearing numerous flowers and extrafloral cup-shaped nectaries. Flower anthesis is diurnal, nectar production is continuous and copious, and the sticky pollen is readily removed by visitors during the first morning hours. The ruby-coloured inflorescences were visited by eight species of hummingbirds (Trochilidae), and 10 species of passerine birds (three Coerebidae and seven Thraupidae). Hummingbirds hovered while probing for nectar and touched flowers occasionally, whereas passerine birds perched and made contact with flowers habitually. Due to differences in flower-visiting and general foraging behaviour, perching birds act as better pollen vectors than hovering birds. The inflorescence of Norantea brasiliensis seems well fitted for pollination by passerine birds, and the hexose-dominated nectar supports this idea. Pollination syndrome trends within Marcgraviaceae may stem from insect-pollinated, condensed and spike-like inflorescences which would give rise to bird-pollinated, brush-type inflorescences. From the same basic condensed inflorescence, bat-pollinated umbelliform inflorescence may be derived from bird-pollinated, pendulous and corymb-like inflorescences. These postulated inflorescence types are found among the extant species of Marcgraviaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号