首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine if and how the two genetically distinct forms, marsh and dune, of Sporobolus virginicus (L.) Kunth. tolerate anaerobic substrates. The treatments in the hydroponic study, conducted in the greenhouse for approximately 6 months, involved growing the marsh and dune forms in aerobic, anaerobic, and alternating aeration treatments. Plants were examined for morphological and physiological responses to the aeration treatments. In response to the continuous anaerobic treatment, the dune form of S. virginicus exhibited increased stolon biomass, but no difference of total biomass or rhizome aerenchyma when compared with the aerobic treatment. In response to alternating aeration, rhizome aerenchyma increased, total biomass decreased, and stolon biomass remained constant. Belowground transport of oxygen enabled the root tissue in all of the aeration treatments to maintain aerobic respiration. The marsh form grown in the alternating aeration treatment had the same total biomass but more rhizome aerenchyma when compared to the aerobic treatment. Growth in the continuous anaerobic treatment resulted in a reduction of total biomass and increased rhizome arenchyma. Marsh form roots did not appear to be respiring anaerobically or producing ethanol or additional malate at the time of harvest; however, root respiration was higher in the anaerobic and alternating treatments. The marsh and dune forms of S. virginicus were able to adjust morphologically or physiologically or to use existing morphological features to tolerate anaerobic substrates. Thus, it appears that the distribution of the two forms of S. virginicus found in coastal sand dunes and in salt marshes is not limited by differences in ability to tolerate waterlogged soils.  相似文献   

2.
Belowground biomass of two ht forms of the salt marsh cordgrass, Spartina alterniflora, in a New England salt marsh exhibited a seasonal cycle. Biomass was highest in midsummer with no secondary peak in biomass corresponding with the autumn dieback of aboveground parts. Total annual biomass production and the maximum depth that living tissue penetrated into the substrate decreased with increasing tidal ht. Substrate characteristics (soil aeration, pH, nutrient levels) known to affect aboveground biomass of S. alterniflora also decreased with increasing tidal ht and may similarly affect belowground biomass across the same tidal gradient.  相似文献   

3.
Seagrass transplants (plant units [PUs]) were established to examine the feasibility of seagrass rehabilitation in Cockburn Sound, Western Australia. Five hundred and twenty plant units (plugs and sprigs) of Posidonia sinuosa Cambridge et Kuo were placed at seven locations at depths of 3, 5, and 9 m and monitored to determine the influence of transplant method, location, and depth upon survival and growth over 2 years. Depending on the site, more plugs had survived at the completion of the trial (mean survival 41%) than sprigs (mean survival 15%). Plug and sprig survival differed significantly with transplant depth, decreasing overall with increasing depth. Forty‐five percent of surviving plugs and 50% of sprigs exhibited horizontal rhizome extension. Mean rhizome extension after 2 years was 9.5 cm/plug (1–23 cm) and 18.3 cm/sprig (0.5–31 cm). Declines in PU survival and variable growth correlate with site‐specific variability in light climate. Plug transplantation was deemed the most suitable method for further manual seagrass rehabilitation, exhibiting higher survival across all sites and conditions; however, they are costly to deploy. Sprig PUs have greatest potential in shallow water with fine sands, moderate water movement, and maximum light availability. The low cost of deploying sprigs may outweigh their lower survival compared to plugs; further efforts should be directed to enhancing survival of sprig PUs under a wider range of conditions. Suitable locations for future rehabilitation efforts in Cockburn Sound were the Eastern and Western Banks and shallow areas off Woodman Point and Mangles Bay.  相似文献   

4.
Aims Extensive dieback of salt marsh dominated by the perennial grass Spartina alterniflora occurred throughout the Mississippi River deltaic plain during 2000. More than 100,000 ha were affected, with 43,000 ha severely damaged. The aim of this work was to determine if sudden dieback could have been caused by a coincident drought and to assess the significance of this event with respect to long‐term changes in coastal vegetation. Location Multiple dieback sites and reference sites were established along 150 km of shoreline in coastal Louisiana, USA. Methods Aerial and ground surveys were conducted from June 2000 to September 2001 to assess soil conditions and plant mortality and recovery. Results Dieback areas ranged in size from ~300 m2?5 km2 in area with 50–100% mortality of plant shoots and rhizomes in affected zones. Co‐occurring species such as Avicennia germinans (black mangrove) and Juncus roemerianus (needlegrass rush) were unaffected. Historical records indicate that precipitation, river discharge, and mean sea level were unusually low during the previous year. Although the cause of dieback is currently unknown, plant and soil characteristics were consistent with temporary soil desiccation that may have reduced water availability, increased soil salinity, and/or caused soil acidification (via pyrite oxidation) and increased uptake of toxic metals such as Fe or Al. Plant recovery 15 months after dieback was variable (0–58% live cover), but recovering plants were vigorous and indicated no long‐lasting effects of the dieback agent. Main conclusions These findings have relevance for global change models of coastal ecosystems that predict vegetation responses based primarily on long‐term increases in sea level and submergence of marshes. Our results suggest that large‐scale changes in coastal vegetation may occur over a relatively short time span through climatic extremes acting in concert with sea‐level fluctuations and pre‐existing soil conditions.  相似文献   

5.

Background and Aims

Phenotypic plasticity, the potential of specific traits of a genotype to respond to different environmental conditions, is an important adaptive mechanism for minimizing potentially adverse effects of environmental fluctuations in space and time. Suaeda maritima shows morphologically different forms on high and low areas of the same salt marsh. Our aims were to examine whether these phenotypic differences occurred as a result of plastic responses to the environment. Soil redox state, indicative of oxygen supply, was examined as a factor causing the observed morphological and physiological differences.

Methods

Reciprocal transplantation of seedlings was carried out between high and low marsh sites on a salt marsh and in simulated tidal-flow tanks in a glasshouse. Plants from the same seed source were grown in aerated or hypoxic solution, and roots were assayed for lactate dehydrogenase (LDH) and alcohol dehydrogenase, and changes in their proteome.

Key Results

Transplanted (away) seedlings and those that remained in their home position developed the morphology characteristic of the home or away site. Shoot Na+, Cl and K+ concentrations were significantly different in plants in the high and low marsh sites, but with no significant difference between home and away plants at each site. High LDH activity in roots of plants grown in aeration and in hypoxia indicated pre-adaptation to fluctuating root aeration and could be a factor in the phenotypic plasticity and growth of S. maritima over the full tidal range of the salt marsh environment. Twenty-six proteins were upregulated under hypoxic conditions.

Conclusions

Plasticity of morphological traits for growth form at extremes of the soil oxygenation spectrum of the tidal salt marsh did not correlate with the lack of physiological plasticity in the constitutively high LDH found in the roots.  相似文献   

6.
Vegetation dieback is an important component of wetland loss in low salinity marshes of coastal Louisiana. A field experiment was conducted to determine the factors responsible for vegetation dieback within oligohaline marshes of Louisiana. Sections of marsh, dominated by Sagittaria lancifolia L., were transplanted into one of four locations depending on the treatment: (1) increased submergence—sods were lowered 15 cm below the donor marsh surface, (2) increased salinity—sods were transplanted into a higher salinity marsh and adjacent dieback pond, (3) increased salinity and submergence—sods were transplanted into a higher salinity marsh and adjacent dieback pond at 15 cm below the marsh surface, and (4) control—sods were exhumed and replaced at the ambient elevation of the donor marsh. Plant biomass and edaphic characteristics were measured after 5 mo. An increase in submergence caused decreased plant growth of the S. lancifolia-dominated marsh community. An increase in salinities to 4–5 g/kg were not detrimental to plant growth. Although saltwater intrusion alone did not cause decreased growth of the S. lancifolia-dominnled plant community, the combination of saltwater intrusion and increased plant submergence caused the greatest decrease in plant growth due to increased toxic sulfides and a likely reduction in the uptake of NH4-N by the wetland vegetation. This illustrates that the dieback of oligohaline marsh vegetation can be alleviated by decreasing plant submergence even at salinities as high as 4.6 g/kg.  相似文献   

7.
Multiple disturbances to ecosystems can influence community structure by modifying resistance to and recovery from invasion by non-native species. Predicting how invasibility responds to multiple anthropogenic impacts is particularly challenging due to the variety of potential stressors and complex responses. Using manipulative field experiments, we examined the relative impact of perturbations that primarily change abiotic or biotic factors to promote invasion in coastal salt marsh plant communities. Specifically we test the hypotheses that nitrogen enrichment and human trampling facilitate invasion of upland weeds into salt marsh, and that the ability of salt marsh communities to resist and/or recover from invasion is modified by hydrological conditions. Nitrogen enrichment affected invasion of non-native upland plants at only one of six sites, and increased aboveground native marsh biomass at only two sites. Percent cover of native marsh plants declined with trampling at all sites, but recovered earlier at tidally flushed sites than at tidally restricted sites. Synergistic interactions between trampling and restricting tidal flow resulted in significantly higher cover of non-native upland plants in trampled plots at tidally restricted sites. Percent cover of non-native plants recovered to pre-trampling levels in fully tidal sites, but remained higher in tidally restricted sites after 22 months. Thus, perturbations that reduce biotic resistance interact with perturbations that alter abiotic conditions to promote invasion. This suggests that to effectively conserve or restore native biodiversity in altered systems, one must consider impacts of multiple human disturbances, and the interactions between them. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Transplants of Fragaria virginiana Duchesne, the wild strawberry, from field and woods sites, were studied under controlled laboratory conditions to determine their seed and vegetative reproduction responses under different density conditions. The following results were obtained: (1) Increased competition among high density grown plants resulted in lower total biomass when compared to low density grown plants; (2) Increased shading in high density plots resulted in a greater percentage of biomass in leaves; (3) The percentage of total biomass in reproductive organs (seed and vegetative) was higher in low density grown plants; (4) Vegetative “reproductive effort” was higher in low density plots than in high density plots while seed “reproductive effort” remained constant between the two density treatments; (5) No significant difference between plants from habitats of different successional maturity was observed under the experimental treatments. These results are discussed in relation to reproductive density response models.  相似文献   

9.
Pearson, J. and Havill, D. C. 1988. The effect of hypoxia andsulphide on culture-grown wetland and non-wetland plants. I.Growth and nutrient uptake.-J. exp. Bot. 39: 363–374. The growth rates of two flood-intolerant (Agropyron pungens,Hordeum vulgare) and two flood-tolerant plants (Oryza sativa,Aster tripolium) were compared after treatments in aerated,unaerated and unaerated plus sulphide, culture solution. Growthof the two flood-intolerant species was reduced 15–20%by lack of aeration and 30–35 % by the sulphide treatment.Growth of the flood-tolerant species was increased by 4–7% when unaerated and decreased 10 % by the sulphide treatment.Of five macro- and three micro-nutrients analysed in shootsand roots, no deficiency or increase in any single element couldaccount for the reduction in growth rate of the flood-intolerantplants. The treatment with sulphide increased the total sulphurm the tissues of the wetland more than in the non-wetland species.A large part of this increase can be accounted for by an increasein sulphate. By comparing the effects of both sulphate and sulphideon the activities of two enzymes of sulphur assimilation (ATPsulphurylase, O-acetylserine sulphydrylase) it was shown thatsulphide uptake by roots does occur and that oxidation to sulphateis its most likely fate. Measurements of root aerenchyma showedno correlation between this and a species' growth rate whenits roots were either unaerated or treated with sulphide. Similarly,there was no correlation between the extent of aerenchyma andthe ability of a plant to oxidize sulphide within the root. Key words: Sulphide uptake, root aerenchyma, sulphide tolerance  相似文献   

10.
JL Nelson  ES Zavaleta 《PloS one》2012,7(8):e38558
Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.  相似文献   

11.
Variable aeration in sequencing batch reactor with aerobic granular sludge   总被引:2,自引:0,他引:2  
This study investigated the effects of reduced aeration in famine period on the performance of sequencing batch reactor (SBR) with aerobic granular sludge. Aerobic granules were first cultivated in two SBRs (R1 and R2) with acetate as sole carbon source. From operation day 27, aeration rate in R1 was reduced from 1.66 to 0.55 cm s(-1) from 110 min to the end of each cycle and further reduced from 30 min to the end of each cycle from day 63. R2 as a control was operated with a constant aeration rate of 1.66 cm s(-1) in the whole cycle during the entire experimental period. Results showed that changing trends of SVI, concentration, average size and VSS/SS of biomass with time in R1 and R2 were similar although different aeration modes were adopted. At steady state, SVI of aerobic granules and biomass concentration maintained at about 40 ml g(-1) and 6 g l(-1), respectively. Average size of granules was about 750 microm in R1 while 550 microm in R2. This is the first study to demonstrate that aerobic granular sludge could be stable at reduced aeration rate in famine period during more than 3-month operation. Such an operation strategy with reduced aeration rate will lead to a significant reduction of energy consumption, which makes the aerobic granular sludge technology more competitive over conventional activated sludge process. Furthermore, the stability of aerobic granular system with variable aeration further indicates that the difference of physiology and kinetics of aerobic granule in feast and famine periods results in the different requirements of oxygen and shear stress for the stability of granules, which will deepen the understanding of mechanism of aerobic granulation in sequencing batch reactor.  相似文献   

12.
The mean sizes and size distributions of air bubbles and viscous castor oil drops were studied in a salt-rich aqueous solution (medium), first separately, and then simultaneously as a three-phase system. The dispersion was created in a 150-mm-diameter stirred tank equipped with a Rushton turbine, and the sizes were measured using an advanced video technique. Trichoderma harzianum biomass was added in some experiments to study the effect of a solid phase under unaerated and aerated conditions to give either three-or four-phase systems. In all cases, the different dispersed phases could be clearly seen. Such photoimages have never been obtained previously. For the three phases, air-oil-medium, aeration caused a drastic increase in Sauter mean drop diameter, which was greater than could be accounted for by the reduction in energy dissipation on aeration. Also, as in the unaerated case, larger drops were observed as the oil content increased. On the other hand, mean bubble sizes were significantly reduced with increasing oil phase up to 15% with bubbles inside many of the viscous drops. With the introduction of fungal biomass of increasing concentration (0.5 to 5 g L(-1)) under unaerated conditions, the Sauter mean drop diameter decreased. Finally, in the four-phase system (oil [10%]-medium-air-biomass) as found in many fermentations, all the phases (plus bubbles in drops) could clearly be seen and, as the biomass increased, a decrease in both the bubble and the drop mean diameters was found. The reduction in size of bubbles (and therefore increase in interfacial area) as the oil and bio- mass concentration increased provides a possible explanation as to why the addition of an oil phase has been reported to enhance oxygen transfer during many fermentations.  相似文献   

13.
Summary Lacunal allocation as the fraction of the total cross sectional area of leaves, stem bases, rhizomes, and roots was determined in both tall and short growth forms of Spartina alterniflora collected from natural monospecific stands. The results indicate that in both growth forms lacunal allocation is greater in stem bases and rhizomes than in leaves and roots and that tall form plants allocate more of their stem and rhizome to lacunae than short form plants.Measurements made in natural stands of Spartina alterniflora suggest that total lacunal area of the stem base increases with increasing stem diameter and that stem diameter increases with increasing plant height and above-ground biomass. However, the fraction of cross section allocated to lacunae was relatively constant and increased only with the formation of a central lacuna.Experimental manipulations of surface and subsurface water exchange were carried out to test the influence of flooding regime on aerenchyma formation. No significant differences in lacunal allocation were detected between plants grown in flooded (reduced) and drained (oxidized) sediments in either laboratory or field experiments. While aerenchyma formation in Spartina alterniflora may be an adaptation to soil waterlogging/anoxia, our results suggest that lacunal formation is maximized as a normal part of development with allocation constrained structurally by the size of plants in highly organic New England and Mid-Atlantic marshes.The cross sectional area of aerenchyma for gas transport was found to be related to the growth of Spartina alterniflora with stands of short form Spartina alterniflora exhibiting a lower specific gas transport capacity (lacunal area per unit below ground biomass) than tall form plants despite having a similar below-ground biomass supported by a 10 fold higher culm density. The increased specific gas transport capacity in tall vs. short plants may provide a new mechanism to explain the better aeration, higher nutrient uptake rates and lower frequency of anaerobic respiration in roots of tall vs. short Spartina alterniflora.  相似文献   

14.
Five ecotypes of Arabidopsis thaliana, from widely dispersed origins, were grown under combinations of ambient and elevated atmospheric CO2 concentrations and ambient and elevated temperatures within solardomes. Total above-ground plant biomass was measured when the majority of plants across all ecotypes and treatments had formed seed pods. There were substantial differences in biomass between the ecotypes across all treatments. Temperature had no effect on biomass whilst CO2 had a significant effect both alone and in interaction with ecotype. The CO2 x ecotype interaction was mostly due to the enhancement of a single ecotype from the Cape Verde Islands.  相似文献   

15.
A nitrogen (ammonium nitrate) pulse of 200 kg ha“1 was added to stands of tall (1.0–1.5 m) Spartina alterniflora, short (< 0.5 m) Spartina alterniflora, and Juncus roemerianus in a Georgia salt marsh in July. The major response ten weeks later was an increase in the aerial biomass and a sharp reduction in the C/N ratio in short Spartina alterniflora. One year after the treatment the difference between the biomass in enriched and control plots was greater than ten weeks after treatment, but the C/N ratio in the plants in the treated plots had risen to that of the controls. The availability of nitrogen appears to limit growth in the middle elevation Georgia salt marsh (short S. alterniflora), but not in the lower (tall S. alterniflora) or higher (J. roemerianus) portions.  相似文献   

16.
We investigated the roles of flooding, salinity, and plant competition in creating a bimodal zonation pattern of the marsh dominant annual plant, Suaeda salsa, along coastal topographic gradients on the Pacific coast of northern China. In two consecutive years, we manipulated salinity and flooding, salinity, and competition for S. salsa seedlings that had been transplanted into the mudflat, the high marsh, and the upland, respectively. S. salsa plants that had been transplanted into the mudflat were completely eliminated in the non-elevated treatments whereas they performed much better in the 10 cm elevated treatments, regardless of salinity treatments. Although the performance of S. salsa transplanted into the high marsh did not differ between the fresh (watered) and the salt (control) treatments, S. salsa seedling emergence in the high marsh was nearly completely inhibited in the salt treatments. In contrast, a large number of S. salsa seedlings did emerge in the fresh treatments. S. salsa transplanted into the upland performed well when neighbors were removed, whereas it appeared to be strongly suppressed when neighbors were present. These data indicated that flooding, salinity, and competition all played a role in determining the zonation pattern of S. salsa. Furthermore, the importance of salinity was found to vary with life-history stage. Based on the results from these field manipulative experiments, we suggest that the marsh plant zonation paradigm may hold true for plant distributions along landscape-scale topographic gradients from mudflats to uplands in general. The relative importance of flooding, salinity, and competition, however, may vary at different elevations within a site and between sites. Handling editor: Pierluigi Viaroli  相似文献   

17.
Summary Oxygen-limited growth was avoided by means of oxygen-enriched aeration in aerobic fermentation processes. Studies were carried out with Candida tropicalis (Cast.) Berkhout and Rhodococcus erythropolis (DSM 43215). The effect of hyperbaric dissolved oxygen tension on growth parameters was examined by varying the dissolved oxygen concentration and the carbon source (glucose, ethanol, and n-alkanes). Up to an oxygen concentration of 40 mg/l in the culture suspension no impairment of the economic coefficients and no promotion of cell lysis was found. It was observed that raised oxygen concentrations in the aeration gas led to enhanced specific growth rates. At cell concentrations above 20 g/l dry weight an uncoupling of carbon source dissimilation and biomass production was observed even at non-limiting oxygen concentrations.  相似文献   

18.
盐沼生态系统环境梯度明显,物种组成较简单,是研究生物多样性与生态系统功能关系的理想对象。本研究以崇明东滩盐沼湿地为研究区域,研究优势种去除对植物群落结构以及底栖动物群落的影响。结果表明:(1)去除处理仅对植物群落分株密度有极显著效应(P0.01)。去除组和对照组物种组成差异随时间增加而减小,处理效应逐渐减弱。(2)去除组底栖动物密度均低于对照组,但差异不显著。(3)盐沼植物群落特征与底栖动物群落有密切关系,植物密度、冠层高度与底栖动物密度相关性极显著。去除优势种后,植物群落分株密度升高,群落内剩余物种占比有所上升,次优势种对群落的补偿效应具有较大贡献;而底栖动物群落密度下降,其生物量和多样性指数的变化趋势与密度并不一致。上述结果表明生物多样性变化影响了盐沼湿地生态系统植物群落和底栖动物群落结构,进而可能影响物质循环和能量流动过程。  相似文献   

19.
Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l(-1)) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (> 95%) compared to the unaerated control bioreactor (approximately 65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l(-1)). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l(-1)), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality.  相似文献   

20.
Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号