首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centrum development in the sooty mold Ascomycete Limacinula samoensis von Hoehnel emend. Reynolds proceeds in an ascostroma which begins as a small cushion of somatic tissue and enlarges by multiplication of cells in an apical region and by cell enlargement. A two-layered ascocarp wall initially surrounds a pseudoparenchymatous core into which the bitunicate asci protrude. Interascal strands of pseudoparenchymatous tissue disintegrate at maturity of the ascocarp. An apical meristem eventually culminates activity with formation of a short ostiolate neck. Centrum development is homologous to the Dothidea type. The centrum development of other capnodiaceous fungi is reviewed.  相似文献   

2.
Ascocarps of Trichometasphaeria turcica Luttrell originated in culture as globose parenchymatous stromata within which ascogonia differentiated. As the ascostroma enlarged, stromal cells immediately above the ascogonium produced hyphal outgrowths whose tips grew downward and intertwined beneath the ascogonium. Intercalary growth of these hyphae formed a pseudoparaphysate centrum. Ascogenous hyphae near the base of the centrum produced bitunicate asci which grew upward among the persistent pseudoparaphyses. The ostiole was a broad pore resulting from dissolution of the peripheral stromal cells above the apex of the single locule. Spiny outgrowths from the peripheral cells surrounded the ostiole. The bitunicate asci and ascostromatic ascocarps place this fungus in the subclass Loculoascomycetidae. The pseudoparaphysate centrum and perithecioid ascostroma are characteristic of the Pleosporales. The apparently insignificant character of a protruding conidial hilum was the only essential feature distinguishing Helminthosporium turcicum Pass., the conidial stage of T. turcica, from H. maydis Nisik. & Miyake, a typical representative of species of Helminthosporium with perfect stages in Cochliobolus.  相似文献   

3.
Ascocarp development in Nectria haematoccocca begins with the formation of deeply staining coils as lateral branches of the vegetative hyphae. As these coils develop into multicellular, multi-nucleate ascogonia, they are surrounded by a pseudoparenchymatous envelope. During ascocarp development an apical meristem produces cells that elongate downward into the centrum, forming long, filamentous, apical paraphyses. When fully developed the cells of the apical paraphyses swell, producing a tissue that is pseudoparenchymatous in appearance. The ascogonium proliferates to form a layer of multinucleate ascogenous cells across the base of the ascocarp. Asci form from the ascogenous cells by means of croziers. The asci grow up among the apical paraphyses, which disintegrate as the ascocarp matures. This pattern is typical of the Nectria-type of development, indicating that this species belongs in the Hypocreales.  相似文献   

4.
Perithecium development in Podospora anserina begins with the formation of a coiled ascogonial initial that arises as a lateral branch from a vegetative hypha. Hyphae grow up around the initial, forming an envelope that will become the ascocarp wall. As the ascocarp increases in size, several layers of thin-walled pseudoparenchyma cells form inside the wall, especially at the apex of the ascocarp. Paraphyses arise both from the base of the ascocarp and from the innermost layer of pseudoparenchyma cells and grow inward and upward, completely filling the centrum with tightly packed filaments. During development of the ascocarp the ascogonium proliferates to form ascogenous hyphae along the base of the centrum. Asci arise from the ascogenous hyphae and grow up among the paraphyses. Meristematic growth at the ascocarp apex results in the formation of an ostiole lined with periphyses. Centrum structure in P. anserina could be interpreted as intermediate between the Xylaria and Diaporthe types.  相似文献   

5.
Perithecia of Gnomonia comari (Ascomycetes) mature within 14 days on cornmeal agar under continuous fluorescent light at 25 C. The perithecium is initiated by a coiled, multicellular ascogonium. Branches from somatic hyphae surround the ascogonium. This hyphal envelope early differentiates into two regions: a centrum of pseudoparenchymatous cells and a peripheral wall of more elongated, flattened cells. The wall produces a long, ostiolate beak by eruption of a column of hyphae from the inner layers at the apex; the cells gradually become thick-walled and brown from the peripheral layers inward. Proliferations from the ascogonial cells near the center of the perithecium form a bowl-shaped mass of ascogenous hyphae which expands centrifugally until it appears in section as a crescentic layer across the middle of the centrum. The centrum pseudoparenchyma above this incipient hymenium disintegrates, and short abortive paraphyses extend upward from the subhymenial pseudoparenchyma into the resulting cavity. The paraphyses disintegrate as the asci develop among them. The hymenium gradually pushes downward into the disintegrating subhymenial pseudoparenchyma until it rests on the perithecial wall. Maturing asci become detached from the hymenium, fill the perithecial cavity, and pass through the ostiole. At the tip of the beak they discharge their ascospores forcibly. Diaporthaceae with abortive paraphyses may occupy an intermediate position in a series leading from forms (Gaeumannomyces graminis) with long delicate paraphyses resembling those in the Sordariaceae to forms (Stegophora ulmea) in which the centrum is entirely pseudoparenchymatous.  相似文献   

6.
The anatomy of Macrozamia communis L. Johnson lateral roots and nodules was studied following axenic culture in light and darkness. Pointed lateral roots from dark cultures had an open apical organization similar to that of other cycads and gymnosperms. A distinct protoderm-derived epidermis was not observed. At the apex, the dermis was formed by the outer root capcortical cell layer. Subapically, the outer cortex formed the dermis. No evidence of an algal zone was observed in these roots. The stele was bounded by a distinct endodermis and contained an exarch, diarch xylem. Apogeotropic nodules which developed at the root-shoot junction in darkness, branched dichotomously and had rounded tips covered by tangentially-enlarged root cap cells. The root cap was reduced to a few cell layers and was confined to the extreme nodule apex. The central region of the apical meristem was enlarged, and meristematic cells contained differentiated amyloplasts. A presumptive algal zone was present in some but not all nodules and divided the cortex into inner and outer regions. Stelar anatomy was similar to that observed in pointed, dark-grown lateral roots, except that there was greater xylem differentiation. Nodules which developed in the light were similar to dark-formed nodules, except that root cap cells were radially enlarged and extended over the flanks of the nodule forming a persistent root cap. The heteromorphic lateral roots of M. communis formed a developmental continuum not a heterorhizic root system.  相似文献   

7.
Large, spirally coiled initials embedded in a subiculum develop into multicellular, multinucleate ascogonia. Hyphae grow up around them to form a prosenchymatous perithecial wall. The ascogonia give rise to multinucleate ascogenous cells from which croziers and asci form. As the ascocarp develops, an apical meristem produces uninucleate cells that elongate downward into long, slender filaments, the apical paraphyses. From a basal layer of ascogenous cells, asci grow up among the apical paraphyses, which disintegrate as the ascocarp matures. Ascospores are verrucose, with obtuse apiculi. This pattern of development is typical of the Nectria-type of Luttrell.  相似文献   

8.
A single, permineralized ascoma resembling a pseudothecium assignable to the Pleosporales is described from the Eocene Appian Way fossil locality on Vancouver Island, British Columbia. The ascoma is globose, ostiolate, and erumpent on a fragment of the bark from an unidentified seed plant. Basally arranged asci contain large, multicelled, obovate ascospores within a single cavity or locule enclosed by a two-layered pseudoparenchymatous tissue that ostensibly represents ascostroma. Given this interpretation of the specimen's morphological features, Margaretbarromyces dictyosporus gen. sp. nov. represents the first report of a corticolous pleosporalean ascoma in the fossil record.  相似文献   

9.
Hanlin , Richard T. (Georgia Experiment Station, Experiment.) Studies in the genus Nectria. II. Morphology of N. gliocladioides. Amer. Jour. Bot. 48(10): 900–908. Illus. 1961.—Swollen tips of vegetative hyphae develop into multicellular archicarps from which multinucleate ascogonia form. From basal cells of each archicarp arise hyphae which grow up into a prosenchymatous, true perithecial wall; around this wall is formed a thin pseudoparenchymatous stroma of compacted hyphae. The ascogonia give rise to ascogenous cells from which croziers and asci form directly. At the same time, an apical meristem forms cells that grow downward into the centrum. These are pseudoparaphyses. Asci grow up among the pseudoparaphyses, which deliquesce as the ascocarp matures. The ascus tip contains a thick ring with a pore and lateral thickening of the ascus wall. Ascospores are forcibly ejected. The chromosome number is 4. This species conforms to the Nectria Developmental Type of Luttrell.  相似文献   

10.
Hanlin , Richabd T. (Georgia Expt. Sta., Experiment.) Morphology of Neuroneetria peziza . Amer. Jour. Bot. 60(1): 56–66. Illus. 1963.—Swollen tips of vegetative hyphae develop into multicellular, multinucleate ascogonia. Hyphae grow up to form a pseudoparenchymatous ascocarp wall. The ascogonia give rise to ascogenous cells from which croziers and asci form. As the ascocarp develops, an apical meristem produces many cells which are pushed downward and form a compact pseudoparenchyma in the centrum. As the asci form, the cells of the pseudoparenchyma elongate, forming central strands. These disintegrate as the asci grow up among them. Mature asci possess a thickened apical cap but no apical ring; the ascospores have longitudinal striations. The chromosome number is n = 5. The pattern of development resembles the Diapor the type of Luttrell but is unique in the formation of strands from the pseudoparenchyma. Other characters, however, indicate a closer affinity to Nectria.  相似文献   

11.
Development of perithecia from single, uninucleate ascospores disclosed a homothallic condition for Chaetomium erraticum. This species was found to produce sessile ascogonial coil initials from uninucleate vegetative cells that become enveloped by hyphae formed at the base of the ascogonium. The ascogonium consists of several cells that are uninucleate or binucleate. A perithecium forms from numerous divisions and enlargement of the surrounding uninucleate cells. Differentiation of the perithecial cells results in the formation of a carbonaceous wall, perithecial hairs, and an ostiole lined with periphyses. A convex hymenial cluster of ascogenous cells forms in the lower half of the centrum from which typical croziers develop. Asci push up into the pseudoparenchyma cells of the centrum. The growth of the ascogenous system is in part responsible for increase in perithecial size. The breakdown of the pseudoparenchyma cells around the developing asci results in the formation of a central cavity in which ascospores are released when the asci deliquesce. No paraphyses are present. The type of development and features of the centrum of C. erraticum and other species of Chaetomium indicate a distinct Xylaria-type centrum.  相似文献   

12.
《Journal of bryology》2013,35(3):345-352
Abstract

Archidium thalliferum possesses a highly specialized persistent cushion-shaped protonema which is unique in Musci. The thalloid structure is pseudoparenchymatous and differentiated into layers with protective, photosynthetic and possibly storage functions.  相似文献   

13.
Following abiotic stress to induce barley (Hordeum vulgare L.) androgenesis, the development of 794 enlarged microspores in culture was monitored by time-lapse tracking. In total, 11% of the microspores tracked developed into embryo-like structures (type-I pathway), 36% formed multicellular structures (type-II pathway) and 53% of the microspores followed gametophytic divisions, accumulated starch and died in the first days of tracking (type-III pathway). Despite the microspore fate, enlarged microspores showed similar morphologies directly after stress treatment. Ultrastructural analysis, however, revealed two morphologically distinct cell types. Cells with a thin intine layer and an undifferentiated cytoplasm after stress treatment were associated with type-I and type-II pathways, whereas the presence of differentiated amyloplasts and a thick intine layer were associated with the type-III pathway. Tracking revealed that the first morphological change associated with embryogenic potential was a star-like morphology, which was a transitory stage between uninucleate vacuolated microspores after stress and the initiation of cell division. The difference between type-I and type-II pathways was observed during the time they displayed the star-like morphology. During the transition phase, embryo-like structures in the type-I pathway were always released out of the exine wall at the opposite side of the pollen germ pore, whereas in the type-II pathway multicellular structures were unable to break the exine and to release embryo-like structures. Moreover, by combining viability studies with cell tracking, we show that release of embryo-like structures was preceded by a decrease in viability of the cells positioned at the site of exine wall rupture. These cells were also positively stained by Sytox orange, a cell death indicator. Thereby, we demonstrate, for the first time, that a position-determined cell death process marks the transition from a multicellular structure into an embryo-like structure during barley androgenesis.  相似文献   

14.
Summary Strain CL ofPhysarum polycephalum forms multinucleate plasmodia within clones of uninucleate amoebae. The plasmodia have the same nuclear DNA content as the amoebae. Analysis of plasmodial development, using time-lapse cinematography, showed that binucleate cells were formed as a result of nuclear division in uninucleate cells. Binucleate cells developed into plasmodia by further nuclear divisions and cell fusions. No fusions involving uninucleate cells were observed. A temporary increase in cell and nuclear size occurred at the time of binucleate cell formation.  相似文献   

15.
Pododimeria, containing the brown-spored species P. gallica and P. andina, is expanded to include species with hyaline as well as brown ascospores. Two new hyalodidymous taxa, P. juniperi and P. gelatinosa, are added to the genus. Species of Pododimeria occur as ectocommensals on living shoots of Cupressaceae or Podocarpaceae. Although the superficial mycelium may extend into the labyrinthine chambers enclosed by the imbricated scale leaves of the host, it does not penetrate the cuticle. The tiny, black, subglobose, uniloculate ascocarps taper basally to stromatic stipes. The bitunicate asci are interspersed with pseudoparaphyses composed of broad, irregularly shaped cells that readily break apart. The thick, brown to bluish-green ascocarp wall of P. juniperi has a broad equatorial band of prosenchymatous cells. The ascocarp wall of P. gelatinosa is composed uniformly of subhyaline, gelatinous pseudoparenchymatous cells covered by a dark, amorphous crust.  相似文献   

16.
Embryonic Stem Cells: Spontaneous and Directed Differentiation   总被引:3,自引:0,他引:3  
The specific structural features of embryonic stem cells and embryoid bodies and mechanisms of their differentiation in different cell types are considered. The mouse embryonic stem cells (line R1) formed multilayer colonies which enlarged as a result of fast cell division. Embryoid bodies that derived from embryonic stem cells consisted of an outer layer, an inner layer, and an internal cavity. The structure of cells of the outer and inner layers markedly differed. Spontaneous and directed differentiation of embryoid bodies is determined by some unspecific and specific factors (growth and differentiation factors and extracellular matrix proteins). Retinoic acid, the most commonly used inducer of differentiation of the embryonic stem cells, induces different types of differentiation when applied at different concentrations. The sequence of expression of tissue specific genes and proteins during differentiation of the embryonic stem cells in vitrois similar to that in vivo.  相似文献   

17.
毛青藤茎的发育解剖学研究   总被引:3,自引:1,他引:2  
毛青藤茎顶端的原生分生组织由原套和原体组成,其行生细胞形成初生分生组织──原表皮、原形成层和基本分生组织。初生分生组织的衍生细胞分化形成茎的初生结构,包括表皮、皮层、维管束和髓。随着茎的继续发育,维管形成层开始活动,由束中形成层产生次生韧皮部和次生木质部分子,而束间形成层仅产生薄壁组织细胞形成宽的射线。在原生韧皮部筛管分化成熟的过程中,韧应部外方仍保留1—2层原形成层细胞,以后,它们分裂为多层纤维原始细胞,在次生结构形成时,这些细胞的细胞壁加厚,形成初生初皮纤维。茎始终未产生用皮。  相似文献   

18.
高山红景天胚胎学研究   总被引:8,自引:4,他引:4  
张萍  申家恒 《植物研究》1998,18(1):38-45
高山红景天(Rhodiola sachalinensis A.Bor.)具8个雄蕊,每个雄蕊有4个花粉囊。小孢子母细胞减数分裂时,胞质分裂为同时型。形成的四分体为四面体形。花药壁由表皮、药室内壁、二层中层和绒毡层五层细胞组成,其发育方式为基本型。腺质型绒毡层,有些绒毡层细胞分裂形成不规则双层,少数细胞双核。二细胞型花粉。雌蕊由4心皮组成。边缘胎座,倒生胚珠,双珠被,厚珠心,胚珠发育中形成珠心喙。大孢子四分体线形或T -形,合点大孢子具功能。胚囊发育为蓼型。成熟胚囊中,卵细胞核、助细胞核均位于细胞的合点端,珠孔端具液泡;极核融合为次生核,并位于卵细胞合点端附近; 3个反足细胞退化。双受精属于有丝分裂前配子融合类型。胚的发育为石竹型;基细胞侵入珠孔端,形成囊状吸器。细胞型胚乳;初生胚乳核分裂形成两个细胞,其珠孔端的细胞发育成胚乳本体,合点端的细胞直接发育成具一单核的合点吸器。  相似文献   

19.
Perithecium development in Sordaria, the type genus of the Sordariaceae, is similar to that reported in other genera of this family. Features that characterize the Sordariaceae include the differentiation of the hyphal envelope that surrounds the ascogonium into peripheral wall layers and a pseudoparenchymatous centrum. Broad paraphyses composed of delicate, multinucleate cells arise from the cells of the centrum and completely fill the perithecium, crushing the remaining pseudoparenchymatous cells against the perithecial wall. Sordaria fimicola differs from other species of Sordariaceae studied in the aggregation of the ascogenous cells to form a placenta-like mass in the base of the centrum. Consequently, the asci arise in a cluster rather than in a uniform wall layer. Incomplete observations on Gelasinospora longispora indicate that its development is typically sordariaceous.  相似文献   

20.
Signal peptide peptidase (SPP) is a multi-transmembrane aspartic proteinase involved in regulated intramembrane proteolysis, which is implicated in fundamental life processes such as immunological response, cell signaling, tissue differentiation, and embryogenesis. In this study, we identified two rice SPPs: OsSPP1 and OsSPP2. Green fluorescent protein-fused OsSPP1 and OsSPP2 were localized to the ER in cultured plant cells. In situ hybridization showed that OsSPPs were strongly expressed in vegetative shoot apex, young panicle, developing panicle, and the early developing florets. Undifferentiated cells, which have the potential to differentiate into all of the aerial parts of the plant are presented in the shoot apex. OsSPPs are located in both the undifferentiated cells, and the early differentiated cells at the shoot apex. These results suggest that rice SPPs have an important function in differentiation and development at the shoot apex. The expression of the shoot apex and ER localization is equal to dicot Arabidopsis thaliana, and will have common crucial roles in plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号