首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental changes in the vascular cambium of Polygonum lapathifolium were determined primarily by an analysis of the secondary xylem. The cambium and xylem consist of fascicular and interfascicular regions in this herbaceous dicotyledon. Near the pith vessels are restricted to the fascicular regions of the xylem. During secondary growth vessels are formed in some radial files in the interfascicular regions. Anticlinal divisions are of two types, oblique and lateral. In interfascicular files consisting of fibers only, about two-thirds of the anticlinal divisions are oblique. The oblique partition averages 31% of the length of the dividing initials. In interfascicular files consisting of vessel elements and fibers, there are almost equal numbers of oblique and lateral divisions. The oblique partition averages 37% of the length of the dividing initials in these files. Lateral divisions account for approximately three-fifths of the anticlinal divisions in the fascicular regions, consisting of vessel elements and fibers. The partitions formed in oblique anticlinal divisions average 64% of the length of the dividing cells in the fascicular regions. The frequency of anticlinal division is much higher in files consisting of vessel elements and fibers than in those consisting of fibers only. There is no loss of fusiform initials, except by ray formation. Ray initiation occurs by simple subdivision of fusiform initials. The findings are discussed in relation to the developmental changes in the vascular cambium in plants of different habits.  相似文献   

2.
Cumbie, B. G. (U. Missouri, Columbia.) The vascular cambium and xylem development in Hibiscus lasiocarpus. Amer. Jour. Bot. 50(9): 944–951. Illus. 1963.—Circumferential growth of the vascular cambium, as determined primarily by an analysis of the secondary xylem, in Hibiscus lasiocarpus, an herbaceous dicotyledon, occurred through both radial and oblique anticlinal divisions. Divisions to produce segments were less frequent. Although the fusiform initials usually elongated somewhat between successive divisions, this accounted for very little increase in circumference of the cambium. A fusiform initial underwent a specific pattern of anticlinal divisions, determined primarily by its length, at the beginning of cambial activity. There was no loss of fusiform initials, except by ray formation. Most new rays originated only after considerable secondary xylem had been formed. The findings are discussed in relation to circumferential growth of the vascular cambium in woody dicotyledons.  相似文献   

3.
Phytolacca dioica L., an evergreen tree of the Phytolaccaceae, is one of the species of Phytolacca which shows anomalous secondary thickening in its stem. This mode of thickening has been regarded as successive cambial activity or alternatively, in some more recent interpretations, as thickening by unidirectional activity of a cambial zone. The stem thickening of P. dioica is of the former type. The cambium produces fascicular strands, showing centrifugal differentiation of xylem and centripetal differentiation of phloem on opposite sides of the cambial layer, and rays are produced between the fascicular areas. In both xylem and phloem the younger elements are closer to the cambium than the older elements. Succeeding cambia arise periodically by periclinal divisions in a layer of parenchyma cells two or three cells beyond the outermost intact phloem derived from the current cambium. Each cambium forms a few parenchyma cells on both sides before it forms derivatives which mature into lignified xylem elements or conductive elements of the phloem. The parenchyma thus formed toward the outside later becomes the site of the origin of the succeeding cambium. Only one or two layers of this phloem parenchyma go on to form the new cambium; the remaining cells accumulate between the outermost phloem and the cortex. P. weberbaueri shows stem structure similar to P. dioica. P. meziana, a shrub, shows normal stem structure.  相似文献   

4.
The peculiar secondary growth in Doxantha unguis-cati provides several developmental problems concerning cambial activity. One of the most interesting of these problems is the presence of both unidirectional and bidirectional arcs of cambium within the same stem. This investigation reports the ontogenetic development of these two kinds of cambial arcs. The first cambial divisions are observed in the fascicular regions of the 11th to 16th internodes from the shoot tip. This event is initiated after internode elongation is completed. In the initial stages, secondary tissues have a cylindrical configuration, but subsequently four grooves become apparent. These grooves signify the first evidence of unidirectional cambial activity. The four unidirectional arcs occur near the four major vascular strands to which all of the leaf traces connect. As secondary growth continues, the bidirectional and unidirectional arcs of cambium become separated and radial fissues can be seen between the furrows of phloem and the lobes of secondary xylem. Additional furrows originate either as sets of four between the original set of four or as single furrows to either or both sides of an existing furrow. All furrows are bordered by multiseriate rays. The initials of the bidirectional and unidirectional cambial arcs are non-stratified and are similar in size and appearance. The phloem produced within the furrow differs in several respects from that produced by the bidirectional arcs. The two types of cambial activity and the precise locations of the unidirectional cambial arcs in the stem (i.e. near the four major strands) suggests that transported products from the leaves are involved in the control of unidirectional cambial activity.  相似文献   

5.
Developmental changes in the vascular cambium of Leitneria floridana, a shrub, were determined primarily by an analysis of the secondary xylem. During the production of the first growth ring of secondary xylem, 37% of the anticlinal divisions in the fusiform initials were lateral, the remaining were oblique. The oblique partition averaged ½ of the length of the dividing initials during this period of growth. Following their origin in anticlinal division, daughter cells elongated at a rapid rate until they were about as long as the mean for all cells, and then most cells elongated at a slow rate. Almost all initials survived during the formation of the inner secondary xylem (growth rings 1–10), and few new rays were formed from fusiform initials. During the production of the outer secondary xylem (growth rings 22–26), lateral divisions accounted for less than 5% of all anticlinal divisions. The oblique partition averaged only ¼ of the length of the dividing cells during this period, although the mean length of dividing initials was relatively constant throughout secondary growth. About 20% of the initials studied during the deposition of the outer secondary xylem disappeared from the cambium, and many others were transformed into ray initials. The findings are discussed in relation to the developmental changes in the vascular cambium in plants of different habits.  相似文献   

6.
S. Pramod  Priti B. Patel  Karumanchi S. Rao 《Flora》2013,208(10-12):549-555
The effect of exogenous ethephon on cambial activity, xylem production and ray population in young shoots of Leucaena leucocephala was investigated anatomically. The application of ethephon showed a diphasic effect on cambial activity and xylogenesis in a dose dependent manner. Lower concentration of ethephon enhanced cambial activity while high concentrations reduced cambial cell divisions and daughter-cell differentiation. High ethephon concentration also resulted in shorter vessel elements, thick walled fibers and phenolic accumulation in ray cells and vessel elements, whereas low concentration allowed elongation of fibers and vessel elements. The density of rays increased significantly with increase in ethylene concentration. The evaluation of longitudinal sections of cambial zone in ethephon treated plants showed high frequency of transformation of fusiform initials into ray initials through divisions and segmentation, resulting in high ray frequency in both xylem and phloem. The present study demonstrates that ethylene plays an important role in regulating secondary vascular tissue composition by reducing the population of fusiform initials in the cambium.  相似文献   

7.
龙眼剥皮再生的解剖学研究   总被引:2,自引:0,他引:2  
谭志雄  廖建良   《广西植物》1991,11(4):312-315+395
龙眼(Dimocarpus tongan Lour.)茎干经过大面积环剥,都能再生出新皮。环剥初期,愈伤组织都由近暴露面的射线细胞产生,稍后,其他未成熟木质部细胞也参加愈伤组织的形成,这些愈伤组织一般在靠近表面都可发生木栓形成层,以后迅速形成正常的周皮。在愈伤组织与木质部交界处的未成熟木质部细胞发生维管形成层。新发生的形成层正常地向外分化出次生韧皮部,向内分化出次生木质部。初期有些原来的射线将新形成层带分割成许多小区,二个月后,由于新的形成层不断平周活动,逐渐将形成层连成一圈,以后基本上与正常树皮维管组织的发育一样。  相似文献   

8.
The secondary vascular tissues (xylem and phloem) of woody plants originate from a vascular cambium and develop as radially oriented files of cells. The secondary phloem is composed of three or four cell types, which are organised into characteristic recurrent cellular sequences within the radial cell files of this tissue. There is a gradient of auxin (indole acetic acid) across both the cambium and the immediately postmitotic cells within the xylem and phloem domains, and it is believed that this morphogen, probably in concert with other morphogenic factors, is closely associated with the determination and differentiation of the different cells types in each tissue. A hypothesis is developed that, in conjunction with the positional values conferred by the graded radial distribution of morphogen, cell divisions at particular positions within the cambium are sufficient to determine not only each of the phloem cell types but also their recurrent pattern of differentiation within each radial cell file.  相似文献   

9.
The growth period of Salix viminalis L. (clone 683) plants near Stockholm, Sweden, (59.5°N, 18.3°E) started in April with flowering and ended in October with abscission of the shoot tips. Cell divisions in the vascular cambium started almost two months before sprouting and ceased at about the same time as the elongation growth of the shoots. Phloem cells were apparently produced before flowering, while new xylem production started at the time of flushing. Cytodifferentiation in immature xylem continued until November. Thick-walled cells with protoplasm were observed adjacent to xylem mother cells in the cambium during the winter. The number of radially arranged cells in the cambial zone increased from 3–4 during dormancy to about 18 during the mitotic maximum in July. Seasonal variation was apparent in vacuolization, wall thickness and presence of storage material in the cells. Lipid bodies and protein bodies occurred in both fusiform and ray initials, while starch was observed in ray initials, ray cells and in the phloem. In September the ultrastructure of the cambium showed anatomical features characteristic for both active and dormant cells. Dictyosomes with vesicles and rough ER were present in thick-walled cells that contained lipid bodies and starch granules. Nuclear divisions in the cambium ended in October.  相似文献   

10.
张泓  胡正海 《植物研究》1987,7(4):121-132
本文报道了药用植物商陆根中异常次生结构的发生和发育过程。商陆根的初生结构和早期的次生结构都是正常的。但是,后来在维管柱的外围以离心的顺序先后产生5-7轮异常形成层.第一轮异常形成层起源于次生韧皮薄壁细胞和射线细胞。后一轮异常形成层在前一轮异常形成层向外产生的薄壁结合组织中发生。各轮异常形成层都以正常的活动方式产生同心环状排列的异常维管束以及它们之间丰富的薄壁结合组织,从而使根变成肉质状。薄壁结合组织细胞以及异常维管束内的薄壁组织细胞中贮藏有淀粉粒。  相似文献   

11.
Interlocked grain in wood of Nyssa sylvatica Marsh. is a lapse-time record of cyclical changes in inclination (rightward or leftward) of fusiform initial cells in the cambium. Typically the inclination cycles have periods of a decade or more. Such cycles can be interpreted as manifestations of long-term endogenous rhythms. Interlocked grain in N. sylvatica is not the result of whole-stem spiral grain that reverses periodically. As wavy grain in other species is a record of wavelike migration of orientational domains along the cambium, interlocked grain in N. sylvatica can be interpreted as being related to a more complex system of domains having long axial dimensions. These domains migrate or change their efficacy and directional sense in place in such a way that some regularity of inclination cycles is maintained at the various stem levels. Inclination cycle lengths have a closer relation to calendar time than they do to the amount of radial growth of the stem. This is affirmed by data from paired stems of similar ages but which grew in diameter at widely different rates.  相似文献   

12.
Observation was made on early ontogeny of vascular cambium in the developing root ofGinkgo biloba L. After completion of root elongation, the vascular meristem gradually acquires cambial characteristics. Strips of the periclinal division of cells in transverse section are observed on the inner side of phloem when the primary xylem and phloem in the stele have been established. The strips are united into a continuous layer between phloem and xylem. In tangenital section, the procambium shows a homogeneous structure, which is initially composed of short cells with transverse end walls and subsequently, of long cells with tapering ends. Then, the procambium is organized into two systems of cells; axial strands of short cells with transverse end walls resulting from the sporadic transverse divisions of long cells, and long cells with tapering ends. Still later, the short cells are divided frequently in a trasverse plane exhibiting one or a few cells in width and several decades of cells in height, while the long cells are elongated. The frequency of transverse divisions of the short cells decreases in subsequent stages. Eventually, the short cells in axial strands are vertically separated from one another by the elongation of neighboring long cells and by the decrease in the frequency of transverse divisions of short cells themselves. Cambial initials occur in two forms; ray initials a few cells in height and one cell in width derived from the short cells, and fusiform initials with tapering ends derived from the long cells.  相似文献   

13.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

14.
The history of cellular events in the storeyed cambium of Lonchocarpus sericeus (Poir.) DC was analysed on the basis of changes in the cell arrangement in successive layers and strata of axial parenchyma in the xylem. The mechanism of formation of the regular interlocked grain was investigated. Inclination of fusiform cells changes intensively whereas height and position of storeys in the successive layers of axial parenchyma are constant. As a result, new contacts between cells are formed by means of the intrusive growth of ends of cells belonging to one storey between the tangential walls of cells of the neighbouring storey and unequal periclinal divisions, which give a new shape to the initials. The concept of intrusive growth between the radial walls of the fusiform initials in the formation of xylem with interlocked grain should be revised on this basis.  相似文献   

15.
Summary The early-formed xylem of Suaeda monoica Forssk. ex J. F. Gmel (Chenopodiaceae) is temporarily rayless. Vascular rays differentiate during later stages of its xylem ontogeny. The rays in Suaeda are heterogeneous, and some of them are aggregated. The mature xylem of this species is characterized by two unique types of vascular rays: (1) rays with several inside initiation centres of small cells formed by local frequent cell divisions in the cambium, and (2) huge xylem rays with radial phloem strands that are connected to the axial phloem. The spacing of the xylem rays is not even, and possible mechanisms controlling ray spacing are discussed. Our observations indicate that rays do not have an inhibitory zone around them in which ray initiation is prevented. The initiation of radial patterns of small cells which appear like inside rays within a large vascular ray suggests that initiation and spacing of rays is controlled by radial signal flows in relationship with axial signal fluxes.  相似文献   

16.
Three types of cambial activity, two hitherto unreported, are described for Stylidium. The four species of sect. Rhynchangium of subgenus Nitrangium have woody cylinders in upright stems. In these a cambium formed beneath the endodermis produces a determinate quantity of fibers, vessel elements, and interxylary phloem strands toward the inside but no derivatives toward the outside; this was correctly reported by Van Tieghem and Morot (1884a) but doubted by subsequent workers. The same species have lignotubers in which a cambium produces contorted xylem (mostly vessels) to the inside, phellem toward the outside. In S. glandulosum and S. laricifolium a cambium formed beneath the endodermis produces an indeterminate quantity of xylem (fibers and vessel elements) and interxylary phloem toward the inside, nothing toward the outside. The xylem is rayless and lacks axial xylem parenchyma. These three modes of cambial activity represent innovations within Stylidiaceae. The family has a wholly herbaceous ancestry if one can judge from the total lack of cambial activity in vascular bundles.  相似文献   

17.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

18.
Vascular pattern and anomalous secondary growth were studied in shoots of Clytostoma callistegoides, a liana having two types of phyllotaxy, one decussate and the other whorled. In shoots with decussate phyllotaxy, typical of bignoniaceous lianas, the vascular pattern has four major vascular strands that extend continuously from internode to internode, whereas in shoots having a whorled phyllotaxy the pattern has six major vascular strands. The first unidirectional cambium segments which result in the anomalous secondary growth were initiated precisely opposite each of the major vascular strands in both types of shoots. It is concluded that positioning of unidirectional cambium segments responsible for anomalous growth is correlated morphogenetically with the vascular pattern.  相似文献   

19.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

20.
Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii × P. grandidentata which form uniseriate and homocellular rays were examined and clarified. Ray parenchyma cells died within 5 years, and the disappearance of nuclei from ray parenchyma cells did not occur successively from the pith side, even within individual radial cell lines of a given ray. Cell death occurred earliest in contact cells, which were connected to adjacent vessel elements through pits, in the fourth annual ring from the cambium. Cell death occurred next in intermediate cells, which were located within the same cell lines as contact cells but were not adjacent to vessel elements, in the fourth annual ring from the cambium. Finally, isolation cells, which were located within the other cell lines of a given ray, died in the fifth annual ring from the cambium. Secondary wall thickenings in contact cells and intermediate cells were initiated before those in isolation cells in the current year’s xylem. Most starch grains were localized in intermediate cells, and there were more lipid droplets in contact cells and intermediate cells than in isolation cells. In addition, the largest quantities of protein were found in contact cells. Our results indicate that the position within a ray and neighboring short-lived vessel elements might affect the timing of cell death and differentiation and, thus, the function of long-lived ray parenchyma cells in Populus sieboldii × P. grandidentata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号