首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The diploid sporophyte of the phycomycetous fungus Allomyces arbuscula bears two types of sporangia: thin-walled, colorless, ephemeral zoosporangia (ZS) and thick-walled, dark-brown, resistant sporangia (RS). Normal wild-type cultures (strain Portugal IE) under standard conditions produce approximately 90% of their total sporangia as RS. These RS give the cultures a dark-brown color. A mutant was induced with UV irradiation in which the ratio of ZS to RS was shifted so that only 20% of the total sporangia are RS. These cultures are a pale, tan color. Hybrids between the mutants and wild-types produce ca. 65% RS and are also intermediate in the color of the culture. Meiotic segregation in the RS of the hybrid sporophytes gives gametophytes half of which when selfed produce mutant sporophytes and half of which produce wild-type sporophytes. The shift from RS to ZS formation is thus considered to be the result of a one-gene mutation at a locus ‘R.’ The haploid gametophytes of wild-type strains have in addition to male and female gametangia a small number (2-4%) of RS. In mutant gametophytes the percent RS has dropped to 0.1-0.2%. The proposed genotypes at the ‘R’ locus in Allomyces arbuscula are: wild-type sporophytes (RR), hybrid sporophytes (Rr), mutant sporophytes (rr), wild-type gametophytes (R) and mutant gametophytes (r).  相似文献   

2.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

3.
The brown algal order Tilopteridales contains three monospecific genera with reduced life histories, Which are assumed to have been derived form ancestors with oogamous reproduction and alternation of generations. The Newfoundland population of Haplospora globosa Kjellman still shows an alternation of gametophytes and sporophytes, but the chromosome Numbers remain equal because of parthenogenesis and apomeiosis, However, DNA fluorometry showed that the DNA level is twice as high in the Sporophytes as in the gametophytes, The DNA variation at constant chromosome numbers is presumably due to endomitosis combined with a law degree of polyteny. A genotypic variant of Haplospora is represented by the population at Helgoland (F.R.G.) where only sporophytes exist, Spores develop into sporophytes instead of gametophytes, and the plants have reduced chromosome number but the same DNA level as the Newfoundland sporophytes  相似文献   

4.
At an early stage of growth gametophytes support the sporophytes of ferns. Young sporophytes become independent of gametophytes when the first leaves develop. Although large fern gametophytes produce multiple archegonia simultaneously, only one sporophyte is typically established on one gametophyte. The number of sporophytes is believed to be controlled in two possible directions, from gametophyte to sporophyte or from preceding sporophyte to another sporophyte. To investigate the effects of gametophytes on their sporophytes, we studied the relationship between organic matter production by gametophytes and the growth of young sporophytes of Thelypteris palustris. We cut gametophytes in half (CGs) to reduce the gametophytes’ production of matter. There was no significant difference between the growth of sporophytes on intact gametophytes (IGs) and that on CGs. According to our estimates, based on the rate of organic matter production, the large gametophyte was able to produce two or more sporophytes. The resources required for CGs to make similar-sized sporophytes was twice that for IGs. In polyembryony each of the multiple sporophytes was similar in size to the single sporophytes. Resource limitation does not seem to explain why fern gametophytes establish single sporophytes.  相似文献   

5.

Tissue culture methods using gametophytes are considered the easiest ways to mass-produce fern sporophytes. The aim of this study was to develop a practical propagation method for the ornamental fern, Athyrium sheareri. The gametophytes obtained from in vitro spore germination were used as experimental materials. We used the chopping method to investigate the culturing conditions for proliferating gametophytes and the blending method for evaluating the mass production of sporophytes in mixed soil. Gametophyte proliferation was determined via Knop medium, various concentrations of Murashige and Skoog (MS) basal medium (1, 1/2, 1/4), and media components (sucrose, nitrogen source, and activated charcoal). The fresh weight of the gametophytes increased by more than 24-fold in 1/2 MS medium. In addition, 1 g of gametophyte could produce a maximum of 255.3 sporophytes in a mixed soil of 7.5 cm2 area. Treating gametophytes with exogenous plant growth regulators promoted the formation and growth of sporophytes. The cultivated young sporophytes were acclimated and successfully grown in greenhouses. We developed a mass production protocol for A. sheareri sporophytes suitable for field application, which is expected to have commercial value.

  相似文献   

6.
Sporophytes appeared on most gametophytes of Thelypteris palustris (Salisb.) Schott that reached a certain size, which is interpreted to be a critical size of gametophytes for the production of sporophytes. After sporophytes were produced, attached gametophytes ceased dry weight growth, but the gametophytes which did not produce sporophytes grew successively. It was hypothesized that matter produced by gametophytes was being supplied to young sporophytes. Photosynthesis and respiration of gametophytes with attached sporophytes were not significantly different from that of gametophytes without sporophytes. Photosynthetic activity of gametophytes dropped from 0.18 to 0.03 mol CO2 g–1 s–1 during the growth period. The higher photosynthetic rates of gametophytes in the early growth stage were important for reaching the critical size for sporophyte production in a short time. Sporophytes in the one leaf stage averaged 0.14 mol CO2 g–1 s–1 of photosynthetic activity. The results show that sporophytes that had expanded the first leaf grow by their own photosynthetic production. Gametophytes allocated the photosynthate for sporophytes and it was an important aid before the one-leaf stage. The supportive role of gametophytes ended at that stage.  相似文献   

7.
Gametophytes of Pellaea viridis that appeared spontaneously on the surface of substratum originating from an ultramafic area were found to form mycothallic symbiosis with arbuscular mycorrhizal fungi (AMF) under laboratory conditions. In gametophytes and sporophytes grown with Glomus tenue, abundant arbuscule formation was observed at both stages. In gametophytes, the fungus was found in the region where the rhizoids are initiated. If G. intraradices was added to the soil, the gametophytes were colonised mostly by G. tenue, and roots of sporophytes were colonised by G. intraradices. The presence of AM fungi in both gametophytes and sporophytes of P. viridis resulted in the development of larger leaf area and root length of the sporophyte. The analysis of gametophytes from the Botanical Garden in Krakow (Poland) showed that cordate gametophytes of Pteridales, namely Pellaea viridis (Pellaeaceae), Adiantum raddianum and A. formosum (Adiantaceae), were also mycothallic.  相似文献   

8.
Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii.  相似文献   

9.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

10.
The capacity to cope with high light stress was investigated in different life-history and developmental stages of Laminaria saccharina Lamour. sporophytes and gametophytes. Changes in photosynthetic efficiency and in the level of photoinhibition were measured by in vivo fluorescence changes of photosystem II. Pigment content was studied using high performance liquid chromatography. Additionally, the morphology of the various developmental stages during the life cycle was studied by light microscopy in relation to the photosynthetic parameters. High light stress (2 h, 500 μmol.m-2.s?1) induced photoinhibition of photosynthesis with fast kinetics in older sporophytes and gametophytes. In contrast, the absolute degree of photoinhibition after light stress was higher in younger than in older sporophytes. Photosynthesis recovered faster in older sporophytes and gametophytes compared to young sporophytes. In very young sporophytes, photosynthesis did not recover fully even after 12 h exposure to low light, indicating severe photodamage. Kinetics of recovery in old sporophytes and in gametophytes showed a fast and a slow phase, whereas younger sporophytes recovered only with a slow phase, The fast phase is indicative of a decline of the photoprotective process, whereas the slow phase indicates a recovery from photodamage. The capacity to cope with high light stress in Laminaria sporophytes increased with increasing age of the thalli. The gametophytes are less sensitive to high light stress and may be selected to endure unfavorable white light conditions. Investigation of the xanthophylls showed that the higher resistance to high light is not caused solely by a higher content of xanthophyll cycle pigments. Additionally, changes in the thallus structure during the development of the sporophytes seemed to cause a higher resistance to high light. The observed changes in the ability to cope with high light in the different life-history and developmental stages of Laminaria saccharina may influence the distribution of the species on the shore.  相似文献   

11.
Sporophytes of some epiphytic species in the fern genus Pyrrosia exhibit Crassulacean acid metabolism (CAM), generally considered to be a derived physiological response to xeric habitats. Because these species alternate between independent sporophytic and gametophytic generations yet only the sporophyte has been characterized physiologically, experiments were conducted to determine the photosynthetic pathways present in mature sporophytes, immature sporophytes, and gametophytes of Pyrrosia longifolia. Diurnal CO2 exchange and malic acid fluctuations demonstrated that although the mature sporophytes exhibited CAM, only C3 photosynthesis occurred in the gametophytes and young sporophytes. Consideration of the above results and those from previous studies, as well as the life cycle of ferns, indicates that the induction of CAM probably occurs at a certain developmental stage of the sporophyte and/or following exposure to stress. Elucidation of the precise mechanisms underlying this C3-CAM transition awaits further research.  相似文献   

12.
Osmunda regalis sporophytes form haploid spores which develop into functionally hermaphroditic gametophytes. The self-fertilization of such gametophytes results in zygotes which are completely homozygous. Spore samples collected from sporophytes in natural populations were used to establish gametophyte cultures. The majority of these gametophytes were unable to form viable embryos when only self-fertilization was possible. Controlled selfing and crossing experiments revealed that the inability of these homozygous embryos to develop normally is attributable to the presence of recessive lethals. To account for this genetic load, an hypothesis is proposed integrating the morphology and ecology of the gametophyte generation with the polyploid genetic system of the sporophyte generation.  相似文献   

13.
Silver fern (Pityrogramma calomelanos L.) is a terrestrial or lithophytic herbaceous fern used for ornamental and medicinal purposes. In its farina it produces the cytotoxic and anticancer compound dihydrochalcone. In vitro induction of apospory and apogamy, and direct field establishment of aposporous gametophytes and subsequent sporophyte development has been accomplished. Half-strength Murashige and Skoog (MS) medium with 3.33 μM N6-benzyladenine (BA) and 2.32 μM kinetin (Kn) showed earlier development and produced higher numbers of aposporous gametophytes than half-strength MS basal medium. Crozier explants developed higher numbers (mean value 29.2) of gametophytes, but were slower than frond explants (mean value 23.2). The gametophytes originated from the epidermal hairs progressed from uniseriate filamentous to cordate through bi-, tri- and multiseriate and spatulate stage with the development of antheridia. Reduction in the nutrient and sucrose concentrations in the media favoured apogamy. Sucrose-free 1/10 strength MS medium and agar plates developed a mean of 30.4 and 29.9 sporophytes, respectively in the light. The greenhouse-established gametophytes developed sporophytes. The established sporophytes ex vitro showed 95% survival rate. Apogamous sporophytes and the source plant showed the same chromosome numbers (2n=116). The established protocol accomplishes apogamy and apospory in silver fern, and the aposporous gametophytes can be used for genetic transformation and development of transgenic silver fern.  相似文献   

14.
The segregation of a marker characterized by pale green gametophytes was monitored within an inbreeding study of the polyploid fern Ceratopteris. Although all of the sporophytes showing segregation were derived from the self-fertilization of haploid gametophytes, a low overall frequency of 2.5% pale gametophytes was observed in the F3–F5 generations. A model based upon a duplicated locus and homoeologous chromosome pairing can explain the segregational behavior within the study. The overall level of homoeologous pairing was determined to be 10%. Occasionally, green gametophytes that were presumably heterozygous for the marker contained pale sectors. This behavior may involve mitotic crossing-over between homoeologous chromosomes.  相似文献   

15.
Cultured tetraspores of Petrocelis middendorffii (Ruprecht) Kjellman from Amchitka Island, Alaska, gave rise to foliose, dioecious gametophytes similar to cultured gametophytes of P. franciscana Setchell & Gardner. A 1:1 ratio male:female gametophytes was obtained. Fertilized female plants produced cystocarps and carpospores that gave rise to crustose plants anatomically similar to field-collected Petro-celis sporophytes. Cultured male gametophytes of P. middendorffii were interfertile with cultured female blades of field-collected Gigartina pacifica Kjellman. Cultured P. middendorffii gametophytes from Amchitka were interfertile with cultured gametophytes of P. franciscana from 2 localities in California. Hybrid carpospores gave rise to crustose sporophytes that have not reproduced. Anatomical comparisons of P. middendorffii from Amchitka with P. franciscana from California showed no important differences in the characters originally used to separate these species. The interfertility of cultured Petrocelis gametophytes from california and Amchitka as well as the similarities of the history and anatomy suggests that a single species is involved. P. franciscana is reduced to a synonym of P. middendorfii.  相似文献   

16.
Four diploid plants and four tetraploid plants ofPhegopteris decursive-pinnata were investigated for determination of the reproductive characteristics of their gametophytes and two major features were recognized. First, gametophytes of the diploids showed an ontogenetic sequence of gametangium formation which is unfavorable for intragametophytic selfing, whereas those of the tetraploids showed that favorable for intragametophytic selfing. Second, 41 to 72% of the isolated gametophytes of the diploids produced sporophytes in the intragmetophytic selfing tests, whereas all of the isolated gametrophytes of the tetraploids produced sporophytes in the tests. Based on these developmental and genetic features of gametophytes, the dissimilar mating systems of the diploids and the tetraploids of this species are discussed.  相似文献   

17.
An in vitro method is described for producing ostrich fern (Matteuccia struthiopteris (L.) Todaro) polyploids from mature sporophytes as a possible means of plant improvement in this economically important fern species. The procedure is based on rejuvenating adult sporophytes (2n) to enable the aposporous production of diploid (2n) gametophytes, and then mating the gametophytes to produce tetraploid (4n) sporophytes. The adult sporophytes were rejuvenated by culturing excised shoot tips for a minimum of three months in a liquid medium (Murashige and Skoog salts) under conditions of extreme carbohydrate deprivation (0.01% sucrose). Apospory was induced by culturing leaves excised from the rejuvenated shoots for two months on a semi-solid medium lacking sucrose, resulting in the production of diploid gametophytes. The gametophytes were transferred to fresh medium and grown to sexual maturity for one or two months, then floated on the surface of a liquid medium containing 0.01% sucrose for up to two months to promote opening of the sex organs. Subsequent self-fertilization resulted in the successful production of tetraploid sporophytes in 11 of the 14 diploid clones in which polyploidization was attempted. Tetraploids (4n=156) were confirmed by cytological examination. This method permits polyploidization of mature, fully characterized plants.  相似文献   

18.
Early gametophyte ontogeny was quantitatively distinct for Olympic Peninsula, Alaskan, and disjunct Idaho populations of the homosporous fern Blechnum spicant (L.) J. Sm. Although variable, gametophyte sex expression was shown to have a genetic component. Statistically different patterns of sex expression characterize each population. The Olympic Peninsula populations were distinct from each other but consistent in having a predominantly unisexual pattern. The disjunct Idaho population was predominantly bisexual at the time when comparable field collected gametophytes bear sporophytes. Preliminary experiments suggest that an antheridogen operates in this species. Increased sowing density favors maleness, and an extract from soil cultures of gametophytes shifts cultures to an exclusively male pattern after a dramatic suppression of growth. Mating experiments revealed that all populations are interfertile, although fertility was highest when the test Idaho population underwent intergametophytic-selfing. The Idaho population evidenced a low level of genetic load consistent with predictions based on its sex expression. Although Olympic Peninsula populations evidenced apparent high genetic load in some experiments, failure to produce abundant sporophytes in other experiments suggested that additional cultural factors operated to reduce sporophyte formation. Moderate density mating experiments produced single sporophytes that were comparable to field collections. Isolated gametophytes underwent polyembryony after a time delay and gametophyte proliferation. Cultural conditions which allow sporophyte formation on isolated gametophytes without this delay or proliferation must be sought before further genetic analysis is undertaken.  相似文献   

19.
Summary Second generation aposporous gametophytes were obtained from sporophytes derived from first generation aposporous gametophytes, which in turn came from the mature fronds grown from spores in the laboratory. Murashige and Skoog modified medium in 1% agar supplemented with sugar alcohols (sorbitol, mannitol), auxins (NAA, 2,4-D) and cytokinin (BA) promoted a higher percentage of aposporous development from mature fronds ofPyrrosia piloselloides derived from aseptically cultured spores as compared with those obtained from plants in the field. A method using 46-diamidino-2-phenyl indole and fluorescence microscopy correlated the deoxyribonucleic acid contents of the aposporous gametophytes and sporophytes derived from them with their ploidy level.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 46-diamidino-2-phenyl indole - DNA deoxyribonucleic acid - MS Murashige and Skoog medium - BA benzyladenine - NAA 1-naphthaleneacetic acid  相似文献   

20.
Jiang P  Qin S  Tseng CK 《Plant cell reports》2003,21(12):1211-1216
The seaweed Laminaria japonica (Phaeophyceae) has a two-generation life cycle consisting of haploid gametophytes and diploid sporophytes. Female and/or male gametophytes were transformed using particle bombardment and the histological LacZ assay was performed on sporophytes generated by either parthenogenesis or inbreeding. Female gametophyte-targeted transformation resulted in similar lower efficiencies in both parthenogenetic and zygotic sporophytes, and only a chimeric expression pattern was observed. Male gametophyte-targeted transformation led to a higher efficiency, with 3.5% of the zygotic sporophytes stained completely blue (all-blue), implying the integration of lacZ at the one-cell stage. Polymerase chain reaction analysis using primers specific for a lacZ-vector juncture fragment and subsequent blotting indicated the presence of the introduced gene in the sporophytes. The method reported here has a potential for seaweed transformation using spore-based bombardment followed by the developmental process.Abbreviations DPR Detected positive rate - ER Expression rateCommunicated by F. Sato  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号