首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mechanoreceptors, mechanical stimulation by external forces leads to the rapid opening of transduction channels followed by an electrical response. Despite intensive studies in various model systems, the molecular pathway by which forces are transmitted to the transduction channels remains elusive. In fly campaniform mechanoreceptors, the mechanotransduction channels are gated by compressive forces conveyed via two rows of microtubules that are hypothesized to be mechanically reinforced by an intervening electron-dense material (EDM). In this study, we tested this hypothesis by studying a mutant fly in which the EDM was nearly absent, whereas the other ultrastructural elements in the mechanosensitive organelle were still present at 50% (or greater) of normal levels. We found that the mechanosensory response in this mutant was reduced by 90% and the sensitivity by at least 80%. To test whether loss of the EDM could lead to such a reduction in response, we performed a mechanical analysis and estimated that the loss of the EDM is expected to greatly decrease the overall rigidity, leading to a marked reduction in the gating force conveyed to the channel. We argue that this reduction in force, rather than the reduction in the number of transduction channels, is primarily responsible for the nearly complete loss of mechanosensory response observed in the mutant fly. Based on these experiments and analysis, we conclude that the microtubule-based cytoskeleton (i.e., microtubules and EDM) is an essential component of the mechanical signaling pathway in fly campaniform mechanoreceptor.  相似文献   

2.
The dendrite of the sensory neuron is surrounded by support cells and is composed of two specialized compartments: the inner segment and the sensory cilium. How the sensory dendrite is formed and maintained is not well understood. Hook-related proteins (HkRP) like Girdin, DAPLE, and Gipie are actin-binding proteins, implicated in actin organization and in cell motility. Here, we show that the Drosophila melanogaster single member of the Hook-related protein family, Girdin, is essential for sensory dendrite formation and function. Mutations in girdin were identified during a screen for fly mutants with no mechanosensory function. Physiological, morphological, and ultrastructural studies of girdin mutant flies indicate that the mechanosensory neurons innervating external sensory organs (bristles) initially form a ciliated dendrite that degenerates shortly after, followed by the clustering of their cell bodies. Importantly, we observed that Girdin is expressed transiently during dendrite morphogenesis in three previously unidentified actin-based structures surrounding the inner segment tip and the sensory cilium. These actin structures are largely missing in girdin mutant. Defects in cilia are observed in other sensory organs such as those mediating olfaction and taste, suggesting that Girdin has a general role in forming sensory dendrites in Drosophila. These suggest that Girdin functions temporarily within the sensory organ and that this function is essential for the formation of the sensory dendrites via actin structures.  相似文献   

3.
Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.  相似文献   

4.
Somatic sensation relies on the transduction of physical stimuli into electrical signals by sensory neurons of the dorsal root ganglia. Little is known about how and when during development different types of sensory neurons acquire transduction competence. We directly investigated the emergence of electrical excitability and mechanosensitivity of embryonic and postnatal mouse sensory neurons. We show that sensory neurons acquire mechanotransduction competence coincident with peripheral target innervation. Mechanotransduction competence arises in different sensory lineages in waves, coordinated by distinct developmental mechanisms. Sensory neurons that are mechanoreceptors or proprioceptors acquire mature mechanotransduction indistinguishable from the adult already at E13. This process is independent of neurotrophin‐3 and may be driven by a genetic program. In contrast, most nociceptive (pain sensing) sensory neurons acquire mechanosensitive competence as a result of exposure to target‐derived nerve growth factor. The highly regulated process of mechanosensory acquisition unveiled here, reveals new strategies to identify molecules required for sensory neuron mechanotransduction.  相似文献   

5.
Tissues of multicellular organisms are characterised by several types of specialised cell–cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton‐associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.  相似文献   

6.
The proteome of the mouse photoreceptor sensory cilium complex   总被引:3,自引:0,他引:3  
Primary cilia play critical roles in many aspects of biology. Specialized versions of primary cilia are involved in many aspects of sensation. The single photoreceptor sensory cilium (PSC) or outer segment elaborated by each rod and cone photoreceptor cell of the retina is a classic example. Mutations in genes that encode cilia components are common causes of disease, including retinal degenerations. The protein components of mammalian primary and sensory cilia have not been defined previously. Here we report a detailed proteomics analysis of the mouse PSC complex. The PSC complex comprises the outer segment and its cytoskeleton, including the axoneme, basal body, and ciliary rootlet, which extends into the inner segment of photoreceptor cells. The PSC complex proteome contains 1968 proteins represented by three or more unique peptides, including approximately 1500 proteins not detected in cilia from lower organisms. This includes 105 hypothetical proteins and 60 proteins encoded by genes that map within the critical intervals for 23 inherited cilia-related disorders, increasing their priority as candidate genes. The PSC complex proteome also contains many cilia proteins not identified previously in photoreceptors, including 13 proteins produced by genes that harbor mutations that cause cilia disease and seven intraflagellar transport proteins. Analyses of PSC complexes from rootletin knock-out mice, which lack ciliary rootlets, confirmed that 1185 of the identified PSC complex proteins are derived from the outer segment. The mass spectrometry data, benchmarked by 15 well characterized outer segment proteins, were used to quantify the copy number of each protein in a mouse rod outer segment. These results reveal mammalian cilia to be several times more complex than the cilia of unicellular organisms and open novel avenues for studies of how cilia are built and maintained and how these processes are disrupted in human disease.  相似文献   

7.
8.
uncoordinated (unc) mutants of Drosophila, which lack transduction in ciliated mechanosensory neurons, do not produce motile sperm. Both sensory and spermatogenesis defects are associated with disrupted ciliary structures: mutant sensory neurons have truncated cilia, and sensory neurons and spermatids show defects in axoneme ultrastructure. unc encodes a novel protein with coiled-coil segments and a LisH motif, which is expressed in type I sensory neurons and in the male germline - the only ciliogenic cells in the fly. A functional UNC-GFP fusion protein specifically localizes to both basal bodies in differentiating sensory neurons. In premeiotic spermatocytes it localizes to all four centrioles in early G2, remaining associated with them through meiosis and as they become the basal bodies for the elongating spermatid flagella. UNC is thus specifically required for normal ciliogenesis. Its localization is an early marker for the centriole-basal body transition, a central but enigmatic event in eukaryotic cell differentiation.  相似文献   

9.
The inner ear sensory organs possess extraordinary structural features necessary to conduct mechanosensory transduction for hearing and balance. Their structural beauty has fascinated scientists since the dawn of modern science and ensured a rigorous pursuit of the understanding of mechanotransduction. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity and resolution, and represent perhaps the most distinctive form of a type of cellular polarity, known as planar cell polarity (PCP). Until recently, however, it was not known how the precise PCP of the inner ear sensory organs was achieved during development. Here, we review the PCP of the inner ear and recent advances in the quest for an understanding of its formation.  相似文献   

10.
R. Golz  U. Thurm 《Protoplasma》1993,173(1-2):13-22
Summary The ectodermal cell layer in the tentacles of the cubozoan polypCarybdea marsupialis contains four types of cells (types 1–4) bearing specialized cilia. Epitheliomuscular cells (type 1) are characterized by motile cilia with dynein-decorated axonemes. 200 nm long extramembranous filaments of unknown function are restricted to a belt-like region distal to the transition zone. Up to 40 rn long rigid cilia formed by a slender epithelial cell type (type 2) are surrounded by rings of short microvilli. The axonemes of these cilia are composed of incomplete microtubules and lack dynein. Microvilli and cilia are linked by intermembrane connectors. Microtubuledoublets and ciliary membrane are interconnected by microtubule-associated cross-bridges only within this contact region. At the tip of each tentacle a single nematocyte (type 3) is surrounded by 7–10 accessory cells (type 4). These both cell types are equipped with similar cilium-stereovilli-complexes consisting of a cone-like arrangement of stereovilli and a modified cilium. The axonemal modifications of the cilium, its interconnections with the surrounding stereovilli and the linkages between ciliary axoneme and ciliary membrane are similar to those known from the cnidocil-complexes of hydrozoons and other epithelial mechanosensitive cells of the collar-receptor type. Our data indicate that besides the nematocyte two other types of mechanosensory cells (types 2 and 4) are integrated in the ectodermal cell layer ofCarybdea which possibly affect the triggering mechanism of nematocyst discharge.  相似文献   

11.
Human ARHGEF11, a PDZ-domain-containing Rho guanine nucleotide exchange factor (RhoGEF), has been studied primarily in tissue culture, where it exhibits transforming ability, associates with and modulates the actin cytoskeleton, regulates neurite outgrowth, and mediates activation of Rho in response to stimulation by activated Galpha12/13 or Plexin B1. The fruit fly homolog, RhoGEF2, interacts with heterotrimeric G protein subunits to activate Rho, associates with microtubules, and is required during gastrulation for cell shape changes that mediate epithelial folding. Here, we report functional characterization of a zebrafish homolog of ARHGEF11 that is expressed ubiquitously at blastula and gastrula stages and is enriched in neural tissues and the pronephros during later embryogenesis. Similar to its human homolog, zebrafish Arhgef11 stimulated actin stress fiber formation in cultured cells, whereas overexpression in the embryo of either the zebrafish or human protein impaired gastrulation movements. Loss-of-function experiments utilizing a chromosomal deletion that encompasses the arhgef11 locus, and antisense morpholino oligonucleotides designed to block either translation or splicing, produced embryos with ventrally-curved axes and a number of other phenotypes associated with ciliated epithelia. Arhgef11-deficient embryos often exhibited altered expression of laterality markers, enlarged brain ventricles, kidney cysts, and an excess number of otoliths in the otic vesicles. Although cilia formed and were motile in these embryos, polarized distribution of F-actin and Na(+)/K(+)-ATPase in the pronephric ducts was disturbed. Our studies in zebrafish embryos have identified new, essential roles for this RhoGEF in ciliated epithelia during vertebrate development.  相似文献   

12.
The cytoskeleton is thought to play a central role in cellular mechanotransduction. However, the specific mechanisms operative in bone cells have not yet been clearly elucidated. Isolating the roles of the specific cytoskeletal elements could ultimately aid in development of treatments for conditions related to the mechanoresponsiveness of bone (e.g. osteoporosis, space flight). Using an osteoblast-like cell line, the minimum doses of nocodazole (microtubules) and cytochalasin D (actin filaments) that would partially disrupt the cytoskeleton while leaving some elements intact were determined. Cultures were exposed to fluid flow shear, and loaded in the presence or absence of inhibitory drugs at the previously established doses. In untreated cultures, shear stress was associated with significant increases in mRNA levels for collagen I and matrix metalloproteinases 1 and 3. These increases were maintained in cytochalasin D-treated cultures, but were almost completely abrogated by nocodazole treatment. These results suggest that some mechanotransduction pathways related to bone matrix metabolism are primarily dependent on the microtubule network.  相似文献   

13.
Acid‐sensing ion channels (ASICs) are voltage‐insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4‐ or 10‐proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell–neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction.  相似文献   

14.
Mechanosensory transduction underlies the perception of touch, sound and acceleration. The mechanical signals exist in the environment are resensed by the specialized mechanosensory cells, which convert the external forces into the electrical signals. Hearing is a magnificent example that relies on the mechanotransduction mediated by the auditory cells, for example the inner‐ear hair cells in vertebrates and the Johnston's organ (JO) in fly. Previous studies have shown the fundamental physiological processes in the fly and vertebrate auditory organs are similar, suggesting that there might be a set of similar molecules underlying these processes. The molecular studies of the fly JO have been shown to be remarkably successful in discovering the developmental and functional genes that provided further implications in vertebrates. Several evolutionarily conserved molecules and signaling pathways have been shown to govern the development of the auditory organs in both vertebrates and invertebrates. The current review describes the similarities and differences between the vertebrate and fly auditory organs at developmental, structural, molecular, and transportation levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 109–130, 2015  相似文献   

15.
Actin-based stress fiber formation is coupled to microtubule depolymerization through the local activation of RhoA. While the RhoGEF Lfc has been implicated in this cytoskeleton coupling process, it has remained elusive how Lfc is recruited to microtubules and how microtubule recruitment moderates Lfc activity. Here, we demonstrate that the dynein light chain protein Tctex-1 is required for localization of Lfc to microtubules. Lfc residues 139-161 interact with Tctex-1 at a site distinct from the cleft that binds dynein intermediate chain. An NMR-based GEF assay revealed that interaction with Tctex-1 represses Lfc nucleotide exchange activity in an indirect manner that requires both polymerized microtubules and phosphorylation of S885 by PKA. We show that inhibition of Lfc by Tctex-1 is dynein dependent. These studies demonstrate a pivotal role of Tctex-1 as a negative regulator of actin filament organization through its control of Lfc in the crosstalk between microtubule and actin cytoskeletons.  相似文献   

16.
Teeth and skin teeth (denticles), collectively named odontodes, are usually associated with the physical roles of cutting, protection or drag reduction in fishes [1,2]. These structures are composed of a soft pulp surrounded by dentine and covered by a mineralized substance such as enamel [3]. Odontodes arise from neural crest cells and epithelium and are often innervated [1-3]. However, little is known about their possible sensory function. Here, we demonstrate for the first time a mechanosensory role for denticles in a cavefish endemic to a fast water flow cave. All fishes gather hydrodynamic information via specialized sense organs called neuromasts [4-6]. Some fishes are especially attentive to such type of information [5] and until now hypertrophy of the neuromast system has been reported as the main constructive sensory adaptation in cavefishes [6,7]. We expect that the mechanosensory nature of denticles highlighted in this cave fish species might reflect a widespread sensory role for these structures in other animals.  相似文献   

17.
Establishment of a proneural field in the inner ear   总被引:1,自引:0,他引:1  
Hair-cells, supporting cells and sensory neurons are the main specialized cell-types responsible for mechanotransduction in the inner ear. They derive from precursors expressing proneural genes and recent data has underlined the importance of SoxB1 genes as upstream activators of proneural genes during cranial placode development. Here we review the steps of establishing a proneural field and propose several models for how early otic regionalization into a proneural territory is achieved.  相似文献   

18.
One of the primary specializations of true flies (order Diptera) is the modification of the hind wings into club-shaped halteres. Halteres are complex mechanosensory structures that provide sensory feedback essential for stable flight control via an array of campaniform sensilla at the haltere base. The morphology of these sensilla has previously been described in a small number of dipteran species, but little is known about how they vary across fly taxa. Using a synoptic set of specimens representing 42 families from all of the major infraorders of Diptera, we used scanning electron microscopy to map the gross and fine structures of halteres, including sensillum shape and arrangement. We found that several features of haltere morphology correspond with dipteran phylogeny: Schizophora generally have smaller halteres with stereotyped and highly organized sensilla compared to nematoceran flies. We also found a previously undocumented high variation of haltere sensillum shape in nematoceran dipterans, as well as the absence of a dorsal sensillum field in multiple families. Overall, variation in haltere sensillar morphology across the dipteran phylogeny provides insight into the evolution of a highly specialized proprioceptive organ and a basis for future studies on haltere sensory function.  相似文献   

19.
The interphase microtubule cytoskeleton of five different microvessel endothelial cell cultures, recently established from bovine corpus luteum, was analysed using anti-tubulin immunofluorescence. An antibody against acetylated microtubules detected four cell types each of which possessed a single cilia. The length of the cilia were up to 10 microns for cell types 1 and 2. Ciliary stubs had a length of up to 0.37 microns in cell types 4 and 5. Cilia were missing in cell type 3. Long and short cilia were located in the perinuclear region from where cytoplasmic microtubules radiated. Cell type 3 displayed straight microtubules rather than the wavy path seen in the other cell types. The amount of tyrosinated microtubules visualized by a specific antibody was consistently higher than that of posttranslationally acetylated microtubules. The latter were more apparent in cell types 4 and 5 than in the other cell types. We conclude: Differences in the cytoplasmic microtubule inventory of each microvessel endothelial cell type points at individual functions maintained in culture.  相似文献   

20.
Living cells are continuously exposed to mechanical cues, and can translate these signals into biochemical information (e.g. mechanotransduction). This process is crucial in many normal cellular functions, e.g. cell adhesion, migration, proliferation, and survival, as well as the progression of diseases such as cancer. Focal adhesions are the major sites of interactions between extracellular mechanical environments and intracellular biochemical signalling molecules/cytoskeleton, and hence focal adhesion proteins have been suggested to play important roles in mechanotransduction. Here, we overview the current molecular understanding in mechanotransduction occurring at focal adhesions. We also introduce recent studies on how extracellular matrix and mechanical microenvironments contribute to the development of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号