首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ulex europaeus is a much-branched shrub with small, narrow, spine-tipped leaves and axillary thorn shoots. The origin and development of axillary shoots was studied as a basis for understanding the changes that occur in the axillary shoot apex as it differentiates into a thorn. Axillary bud primordia are derived from detached portions of the apical meristem of the primary shoot. Bud primordia in the axils of juvenile leaves on seedlings develop as leafy shoots while those in the axils of adult leaves become thorns. A variable degree of vegetative development prior to thorn differentiation is exhibited among these secondary thorn shoots even on the same axis. Commonly the meristems of secondary axillary shoots initiate 3–9 bracteal leaves with tertiary axillary buds before differentiating as thorns. In other cases the meristems develop a greater number of leaves and tertiary buds as thorn differentiation is delayed. The initial stages in the differentiation of secondary shoot meristems as thorns are detected between plastochrons 10–20, depending on vigor of the parent shoot. A study of successive lateral buds on a shoot shows an abrupt conversion from vegetative development to thorn differentiation. The conversion involves the termination of meristematic activity of the apex and cessation of leaf initiation. Within the apex a vertical elongation of cells of the rib meristem initials and their immediate derivatives commences the attenuation of the apex which results in the pointed thorn. All cells of the apex elongate parallel to the axis and proceed to sclerify basipetally. Back of the apex some cortical cells in which cell division has persisted longer differentiate as chlorenchyma. Although no new leaves are initiated during the extension of the apex, provascular strands are present in the thorn tip. Fibrovascular bundles and bundles of cortical fibers not associated with vascular tissue differentiate in the thorn tip and are correlated in position with successive incipient leaves in the expected phyllotactic sequence, the more developed bundles being related to the first incipient leaves. Some secondary shoots displayed variable atypical patterns of meristem differentiation such as abrupt conversion of the apex resulting in sclerification with limited cell elongation and small, inhibited leaves. These observations raise questions concerning the nature of thorn induction and the commitment of meristems to thorns.  相似文献   

2.
Primary shoot vasculature has been studied for 31 species of Pereskioideae and Opuntioideae from serial transections and stained, decorticated shoot tips. The eustele of all species is interpreted as consisting of sympodia, one for each orthostichy. A sympodium is composed of a vertically continuous axial bundle from which arise leaf- and areole-trace bundles and, in many species, accessory bundles and bridges between axial bundles. Provascular strands for leaf traces and axial bundles are initiated acropetally and continuously within the residual meristem, but differentiation of procambium for areole traces and bridges is delayed until primordia form on axillary buds. The differentiation patterns of primary phloem and xylem are those typically found in other dicotyledons. In all species vascular supply for a leaf is principally derived from only one procambial bundle that arises from axial bundles, whereas traces from two axial bundles supply the axillary bud. Two structural patterns of primary vasculature are found in the species examined. In four species of Pereskia that possess the least specialized wood in the stem, primary vascular systems are open, and leaf traces are mostly multipartite, arising from one axial bundle. In other Pereskioideae and Opuntioideae the vascular systems are closed through a bridge at each node that arises near the base of each leaf, and leaf traces are generally bipartite or single. Vascular systems in Pereskiopsis are relatively simple as compared to the complex vasculature of Opuntia, in which a vascular network is formed at each node by fusion of two sympodia and a leaf trace with areole traces and numerous accessory bundles. Variations in nodal structure correlate well with differences in external shoot morphology. Previous reports that cacti have typical 2-trace, unilacunar nodal structure are probably incorrect. Pereskioideae and Opuntioideae have no additional medullary or cortical systems.  相似文献   

3.
The crown of many trees is composed of a main axis and branches. All branches arise from axillary or lateral buds and two types of branches exist: proleptic and sylleptic. Proleptic branches form from buds that have undergone a rest period, typically associated with winter dormancy, whereas sylleptic branches emerge without a rest and without complete bud formation. All trees have proleptic branches; some trees with the indeterminant growth habit have both proleptic and sylleptic branches. Sylleptic branches may play an important role in determining tree growth, architecture and adaptation for many temperate-zone woody plants. We review evidence for the phenotypic plasticity of sylleptic branches and its genetic, environmental, and developmental control.  相似文献   

4.
Axillary meristem development in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Axillary shoot apical meristems initiate post-embryonically in the axils of leaves. Their developmental fate is a main determinant of the final plant body plan. In Arabidopsis, usually a single axillary meristem initiates in the leaf axil even though there is developmental potential for formation of multiple branches. While the wild-type plants rarely form multiple branches in the leaf axil, tfl1-2 plants regularly develop two or more branches in the axils of the rosette leaves. Axillary meristem formation in Arabidopsis occurs in two waves: an acropetal wave forms during plant vegetative development, and a basipetal wave forms during plant reproductive development. We report here the morphological and anatomical changes, and the STM expression pattern associated with the formation of axillary and accessory meristems during Arabidopsis vegetative development.  相似文献   

5.
The relationship between several growth components of a shootand the fates of the axillary meristems (developing in the axilsof the leaves) borne by that shoot were studied, on first-ordershoots of young peach trees. A comprehensive picture of thoserelationships was obtained by a discriminant analysis. Shootgrowth at meristem emergence date was characterized by internodelength, leaf-production rate and leaf-unfolding duration. Allpossible fates of axillary meristems at the end of the growingseason (i.e. blind nodes, single vegetative or flower bud, budassociations, sylleptic or proleptic shoots) were considered.Shoot-elongation rate determined meristem fates quantitatively.The number of buds produced by a meristem increased when theshoot-elongation rate increased. Qualitatively, the fate of axillary meristems was related tothe balance between shoot-growth components. If the subtendingleaf unfolded slowly, sylleptic or proleptic shoots were morelikely to develop than bud associations, for high shoot-elongationrates; and flower buds were more frequent than vegetative buds,for low shoot-elongation rates. Compared to flower buds, blindnodes appeared for similar shoot-elongation rates but longerinternodes and lower leaf-production rates. The emergence dateslightly modified the relation between shoot growth and axillary-meristemfates, but the main features held true throughout the growingseason. The relationships between shoot growth and meristem fates mayresult from competitive interactions between the growing subtendingleaf and the developing axillary meristem. Growing conditionsmight also influence both shoot growth and meristem fates byfavouring either cell enlargement or cell division.Copyright1995, 1999 Academic Press Peach tree, Prunus persica (L.) Batsch, axillary meristem, meristem fate, branching, flowering, shoot growth, discriminant analysis, exploratory analysis  相似文献   

6.
The influence of shoot architectural position on growth andbranching pattern of young Cedrus atlantica (Endl.) Manettiex Carrière trees were studied. Extension growth andtype of axillary products (lateral bud, sylleptic short or longshoots) of annual shoots of increasing branching order (mainstem, branches and branchlets) were recorded weekly during the1993 growing season. Annual final shoot length, duration ofextension, and maximum extension rate decreased with increasingbranching order. Sylleptic axillary shoots occurred only onannual shoots of the main stem and branches and were producedwhen extension rate was at its highest. Differences in growthrate and final length of annual shoots, according to their architecturalposition, were related to differences in the total number anddiversity of types of sylleptic axillary shoots produced. Itis suggested that types and numbers of sylleptic axillary shootsproduced are linked with threshold values for both final lengthand extension rate of the parent shoot. Copyright 1999 Annalsof Botany Company Atlas cedar, extension growth, sylleptic branching, tree architecture, morphology.  相似文献   

7.
Davis , Edward L. (U. Massachusetts, Amherst.) Medullary bundles in the genus Dahlia and their possible origin. Amer. Jour. Bot. 48(2): 108–113. Illus. 1961.—The system of medullary bundles which extends throughout the stem and into the leaves and branches in D. lehmanni is described. It is suggested that this system may have arisen from leaf traces and that the condition in D. scapigera var. scapigera f. merckii and D. coccinea, in which leaf traces fail to develop secondary tissue while adjacent bundles are increasing in diameter, may represent the incipient stage of development of medullary bundles within the genus. The correspondence between the occurrence of medullary bundles and the sectional division of the genus on taxonomic grounds by Sherff is noted.  相似文献   

8.
Summary Primordia from buds of sun and shade twigs of European beech (Fagus sylvatica L.) were collected six times a year for anatomical investigations. Differentiation into sun-leaf and shade-leaf primordia was first observed in early August. Sun-leaf primordia had five, and shade-leaf primordia four layers of mesophyll meristem cells. With potted graft unions of beeches possible structural changes of leaf primordia were investigated. Trees adapted to shade develop sun-leaf primordia when put into full daylight, provided the transfer happened before July. Trees adapted to full daylight developed leaf primordia which remained structurally sun-leaf primordia when the plant was kept under shade conditions. Shadeleaf branches of young beech trees cut in February in order to expose the shade buds to full daylight developed either shade leaves or intermediate shade/sun leaves. These experiments show that the subtending leaf may provide the developing axillary bud with photoassimilates, but its character, whether sun or shade leaf, has no influence on the character of the developing leaf primordia.  相似文献   

9.
Clonal species are characterised by having a growth form in which roots and shoots originate from the same meristem so that adventitious nodal roots form close to the terminal apical bud of stems. The nature of the relationship between nodal roots and axillary bud growth was investigated in three manipulative experiments on cuttings of a single genotype of Trifolium repens. In the absence of locally positioned nodal roots axillary bud development within the apical bud proceeded normally until it slowed once the subtending leaf had matured to be the second expanded leaf on the stem. Excision of apical tissues indicated that while there was no apical dominance apparent within fully rooted stems and very little in stems with 15 or more unrooted nodes, the outgrowth of the two most distal axillary buds was stimulated by decapitation in stems with intermediate numbers of unrooted nodes. Excision of the basal branches from stems growing without local nodal roots markedly increased the length and/or number of leaves on 14 distally positioned branches. The presence of basal branches therefore prevented the translocation of root-supplied resources (nutrients, water, phytohormones) to the more distally located nodes and this caused the retardation in the outgrowth of their axillary buds. Based on all three experiments we conclude that the primary control of bud outgrowth is exerted by roots via the acropetal transport of root-supplied resources necessary for axillary bud outgrowth and that apical dominance plays a very minor role in the regulation of axillary bud outgrowth in T. repens.  相似文献   

10.
Branching in plants increases plant access to light and provides pathways for regrowth following damage or loss of the apical meristem. We conducted two experiments in an eastern Kansas tallgrass prairie to determine how apical meristem loss (by clipping), apical meristem damage (by insect galling), and increased light availability affected growth, reproduction, and branching in Silphium integrifolium (Asteraceae). The first experiment compared clipping with galling. Clipping increased axillary shoot numbers, while galling increased axillary shoot lengths, reflecting different allocation responses among damage types and inhibition of branching by galls. However, total capitulum production was less in all gall/clip treatments than in intact shoots. The second experiment compared clipping with mowing the surrounding vegetation to increase light availability. Mowing increased total leaf, total capitulum, and axillary shoot length and axillary capitulum production in clipped and unclipped plants and in large vs. small shoots. The presence of the neighboring canopy, not of an intact apical meristem, was therefore the stronger limitation on leaf and capitulum production. These experiments suggest that damage and light competition affected both branching frequency and the partitioning of resources among shoots, branches, and leaves. Because Silphium's growth form is widespread, similar responses may occur in other grassland forbs.  相似文献   

11.
Plants differ from most animals in their ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems harboring new stem cell niches. In seed plants, this is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Here, we describe the initial processes of Arabidopsis thaliana axillary meristem initiation. Using reporter gene expression analysis, we find that axillary meristems initiate from leaf axil cells with low auxin through stereotypical stages. Consistent with this, ectopic overproduction of auxin in the leaf axil efficiently inhibits axillary meristem initiation. Furthermore, our results demonstrate that auxin efflux is required for the leaf axil auxin minimum and axillary meristem initiation. After lowering of auxin levels, a subsequent cytokinin signaling pulse is observed prior to axillary meristem initiation. Genetic analysis suggests that cytokinin perception and signaling are both required for axillary meristem initiation. Finally, we show that cytokinin overproduction in the leaf axil partially rescue axillary meristem initiation-deficient mutants. These results define a mechanistic framework for understanding axillary meristem initiation.  相似文献   

12.
Two new species of Pleonotoma Miers (Bignonieae, Bignoniaceae) from Brazilian Amazonia are described and illustrated: Pleonotoma fissicalyx B. M. Gomes & Proen?a and P. longiflora B. M. Gomes & Proen?a. P. fissicalyx is characterised by foliaceous prophylls of the axillary bud, 3-ternate leaves, a large number of short racemes concentrated at the apex of the flowering branch with many visible pedicel scars, a laterally fissured, almost spathaceous calyx, and a small, narrow hypocrateriform corolla with subexserted anthers; the fruits are unknown. P. longiflora is characterised by the combination of weakly tetragonal branchlets with unribbed angles, non-foliaceous, flat, rounded prophylls of axillary bud with an eccentric tip, 2-ternate leaves, broad axillary racemes, an elongate tubular calyx and a hypocrateriform corolla up to 12 cm long; its inclusion within Pleonotoma is confirmed by molecular phylogeny.  相似文献   

13.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

14.
Sylleptic branches grow out from lateral buds during the same growing season in which the buds are formed. This type of branching is present in poplar and in many tropical species. It results in the production of more branches, more leaves and expanded photosynthetic capacity and is thought to assist in increasing the overall growth and biomass of the tree at a young age. However, very little is known about the physiology of sylleptic branching in poplar, which is an extremely important source of fibre and fuel. In the present study of three hybrid poplar clones (11-11, 47-174 and 49-177) of Populus trichocarpa x P. deltoides exhibiting contrasting degrees of sylleptic branching, an analysis was carried out on parent shoot elongation and sylleptic branching, together with a preliminary comparison of the parent shoots' sensitivity to auxin (naphthaleneacetic acid) as a repressor of lateral bud outgrowth, and cytokinin (benzyladenine) as a promoter. Suggestive evidence was found for an inverse correlation between parent shoot sensitivity to auxin and the degree of sylleptic branching, as well as a partially positive correlation with respect to sensitivity to cytokinin. The present data are consistent with the hypothesis that auxin and cytokinin may play repressive and promotive roles, respectively, in the sylleptic branching of hybrid poplar.  相似文献   

15.
Anatomical observations were made on 1-, 2-, and 3-yr-old plants of Yucca whipplei Torr, ssp. percursa Haines grown from seed collected from a single parent in Refugio Canyon, Santa Barbara, California. The primary body of the vegetative stem consists of cortex and central cylinder with a central pith. Parenchyma cells in the ground tissue are arranged in anticlinal cell files continuous from beneath the leaf bases, through the cortex and central cylinder to the pith. Individual vascular bundles in the primary body have a collateral arrangement of xylem and phloem. The parenchyma cells of the ground tissue of the secondary body are also arranged in files continuous with those of the primary parenchyma. Secondary vascular bundles have an amphivasal arrangement and an undulating path with frequent anastomoses. Primary and secondary vascular bundles are longitudinally continuous. The primary thickening meristem (PTM) is longitudinally continuous with the secondary thickening meristem (STM). Axillary buds initiated during primary growth were observed in the leaf axils. The STM becomes more active prior to and during root initiation. Layers of secondary vascular bundles are associated with root formation.  相似文献   

16.
Summary Shoot systems developed over 3 successive years were investigated on 55 understorey Tsuga canadensis (L.) Carr. trees. Paired comparisons of preformed-leaf content of terminal buds and numbers of leaves produced on new shoots showed that neoformed leaves were produced in large numbers. Parent-shoot character was not useful in predicting numbers of preformed leaves, was better related to total leaves produced, but left the majority of the variation unexplained. This reflected the capacity of any terminal bud to produce a shoot with more or less neoformation, depending on conditions for growth. All shoots over 6 cm long produced sylleptic shoots that bore from two to many leaves and were arranged in a mesitonic pattern along the parent. Some of the longer sylleptic shoots produced lateral buds or second-order sylleptic shoots. Monopodial second-year extensions of sylleptic-shoot axes followed an acrotonic pattern, as did proleptic shoots from the few lateral buds borne on the parent shoots. Such lateral buds were more frequent on shorter parent shoots: they typically occurred near the proximal and distal ends. Duration of shoot extension was positively correlated with shoot length: terminal buds became evident as shoot extension neared cessation.  相似文献   

17.
Tiller number is one of the most important agronomic traits that determine rice (Oryza sativa) yield. Active growth of tiller bud (TB) requires high amount of mineral nutrients; however, the mechanism underlying the distribution of mineral nutrients to TB with low transpiration is unknown. Here, we found that the distribution of Zn to TB is mediated by OsZIP4, one of the ZIP (ZRT, IRT-like protein) family members. The expression of OsZIP4 was highly detected in TB and nodes, and was induced by Zn deficiency. Immunostaining analysis revealed that OsZIP4 was mainly expressed in phloem of diffuse vascular bundles in the nodes and the axillary meristem. The mutation of OsZIP4 did not affect the total Zn uptake, but altered Zn distribution; less Zn was delivered to TB and new leaf, but more Zn was retained in the basal stems at the vegetative growth stage. Bioimaging analysis showed that the mutant aberrantly accumulated Zn in enlarged and transit vascular bundles of the basal node, whereas in wild-type high accumulation of Zn was observed in the meristem part. At the reproductive stage, mutation of OsZIP4 resulted in delayed panicle development, which is associated with decreased Zn distribution to the panicles. Collectively, OsZIP4 is involved in transporting Zn to the phloem of diffuse vascular bundles in the nodes for subsequent distribution to TBs and other developing tissues. It also plays a role in transporting Zn to meristem cells in the TBs.  相似文献   

18.
Seedling morphology and vascular course inTribulus terrestris were studied. This species has no erect stem, but four buds appear immediately above the cotyledonary node and grow into prostrate shoots. They were determined to be the main axis of the seedling and the axillary branches of the earliest three foliage leaves, which arise very close to each other. All the leaves, including cotyledons, are vascularized with four bundles among which two are related to a single median gap. When two leaves are attached to one node, lateral traces to the opposed leaves are derived by bifurcation of a single bundle at either side of the stem. In the shoot with a series of alternate leaves, the median pair of traces to every other leaf are found on the same orthostichy. In the branch of which the first node bears no flower but an anisophyllous pair of leaves, the smaller leaf at the node was proven to be the first prophyll because its median traces are superposed by those to the leaf at the next node.  相似文献   

19.
The inflorescence of Helwingia japonica (Thunb.) Dietr. is initiated adjacent to the leaf axil on the adaxial side of the base of a leaf primordium during its second plastochron. The inflorescence which develops from the resulting primordium comes to be situated on the midrib of the mature fertile leaf, through the action of a basal, intercalary meristem. In fertile leaves this meristem develops beneath, as well as above, the insertion of the inflorescence primordium on the leaf primordium. The same meristem is present in sterile leaves as well. A separate, adaxial vascular bundle departs from the leaf trace in the base of the petiole and leads to the inflorescence, in the mature fertile leaf. This adaxial vascular bundle is absent in sterile leaves. It is argued that the vascular anatomy does not conclusively confirm the hypothesis that the epiphyllous inflorescence is the congenital fusion product of a leaf and an axillary inflorescence. Instead, it is suggested that the interplay of changes in the position of primordium initiation, and intercalary growth, offers an ontogenetic explanation of the situation, which in turn may be related to the phylogeny of the species in question. It appears to be misguided and futile to look for homologies (i.e., 1:1 correspondences) between fertile and sterile leaves, since 1:1 correspondences do not exist in this case.  相似文献   

20.
In both Chamaedorea seifrizii Burret and C. cataractarum Martius each adult foliage leaf subtends one axillary bud. The proximal buds in C. seifrizii are always vegetative, producing branches (= new shoots or suckers); and the distal buds on a shoot are always reproductive, producing inflorescences. The prophyll and first few scale leaves of a vegetative branch lack buds. Transitional leaves subtend vegetative buds and adult leaves subtend reproductive buds. Both types of buds are first initiated in the axil of the second or third leaf primordia from the apex, P2 or P3. Later development of both types of bud tends to be more on the adaxial surface of the subtending leaf base than on the shoot axis. Axillary buds of C. cataractarum are similarly initiated in the axil of P2 or P3 and also have an insertion that is more foliar than cauline. However, all buds develop as inflorescences. Vegetative branches arise irregularly by a division of the apex within an enclosing leaf (= P1). A typical inflorescence bud is initiated in the axil of the enclosing leaf when it is in the position of P2 and when each new branch has initiated its own P1. No scale leaves are produced by either branch and the morphological relationship among branches and the enclosing leaf varies. Often the branches are unequal and the enclosing leaf is fasciated. The vegetative branching in C. cataractarum is considered to be developmentally a true dichotomy and is compared with other examples of dichotomous (= terminal) branching in the Angiospermae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号