首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystodinium bataviense Klebs is the first dinoflagellate observed to exhibit specialized zoospore behavior which results in colonization of the epineuston. The zoospore: (1) is strongly phototactic; (2) changes shape rapidly upon release; (3) possesses at least two types of swimming behavior, including a “stop mechanism”; and, (4) sheds its theca as the new cell wall asymmetrically elongates into the immobile vegetative stage. These features working in concert facilitate the entrance of Cystodinium into the epineuston. Detailed observations of zoospore morphology and analysis of its behavior are used as new characters to further delimit C. bataviense. Since vegetative morphology has proven unsatisfactory in circumscribing other Cystodinium species, the study of variation in zoospore characters will help to clarify taxonomic units within the genus.  相似文献   

2.
We investigated the effects of salinity on the zoospore production of four mangrove thraustochytrid isolates, Schizochytrium sp. KF1, Aurantiochytrium mangrovei KF6, Thraustochytrium striatum KF9 and Ulkenia sp. KF13. The zoospore motilities, which were based on curvilinear velocity (VCL) and straight-line velocity (VSL), were monitored using the Computer-Assisted Sperm Motility Analysis (CASA) Software system. The zoospore production of four isolates was suppressed at salinity above 15‰. Schizochytrium sp. produced the greatest number of zoospores at 15‰, while Aurantiochytrium mangrovei and Ulkenia sp. produced abundant zoospores in diluted sea water ranging from 7.5 to 15‰. Thraustochytrium striatum performed relatively poorly under all salinities. Salinity and exposure time, as well as their interactions, had significant impacts on most zoospore velocity measurements. The optimal velocities of zoospore motility also varied among isolates. Zoospores of Schizochytrium sp. and A. mangrovei had similar responses to salinity, with the highest motility at 7.3‰, followed by a decrease in velocities with increasing salinity. In contrast, the zoospore of T. striatum had optimal motility at 12‰ and remained highly motile from 15 to 20‰. The velocities of zoospores of Ulkenia sp. were the lowest among the tested thraustochytrids and had optimal motility at 12‰. Zoospores of all the isolates remained active after 4 h of exposure to aqueous medium, but the optimal salinity for each mode of swimming changed. The ecological significance of these data are discussed.  相似文献   

3.
Forward direction assays have been developed for the last two pathway-specific enzymes of hexosamine biosynthesis using crude extracts from Blastocladiella emersonii zoospores. The specific enzyme activities measured are substantially higher than those reported with enzyme preparations from other organisms. During the development of one of the assays, another enzyme activity was observed which converts one of the intermediates of the pathway, N-acetylglucosamine-6-phosphate, to N-acetylglucosamine. The finding of these three enzyme activities in zoospore extracts completes the demonstration that all the enzyme activities necessary to synthesize some 2% by weight as chitin early during zoospore germination (de novo cell wall formation) pre-exist in the zoospore. This demonstration is consistent with the conclusion that the hexosamine pathway is regulated at the post-translational level during zoospore germination.  相似文献   

4.
Application and availability of real-time polymerase chain reaction (PCR) assay to detect and quantify the Noctiluca scintillans zoospore were investigated seasonally. Specific primer set for N. scintillans 18S rDNA was designed and applied to real-time PCR assay using the serial dilutions of N. scintillans zoospores. The real-time PCR assays with Ns63F and Ns260R primers were applied to sea water samples collected weekly in Manazuru Port of Sagami Bay, Japan from April 2005 to June 2006. We developed effective DNA preparation steps for collecting the template DNA of N. scintillans zoospore: size fraction and filter concentration of the water samples, fixation with Lugol solution, cell lysis, and purification. This method is useful for the monitoring of the zoospores of N. scintillans, and can also be used for other small and physiologically fragile planktonic cell. Variation in the density of zoospore was successfully detected in the field samples. The peak density of N. scintillans zoospore was observed to occur just before or at the same time as the peak of the vegetative cells. Moreover, zoospores were detected in seawater even when the vegetative cells were not observed. The presence of zoospore was found all year round in the present study. In this regards, this information is essential for the study of the life cycle and seasonal variation of N. scintillans in the coastal waters.  相似文献   

5.
When mature Protosiphon cells were placed in darkness, zoospore production was more extensive and was completed in a shorter time at a temperature of 27 C than at 22 or 15 C. Cool-white fluorescent (Sylvania) light inhibited the process measurably at a radiation intensity of 0.6±103 ergsjcm2-sec; inhibition was 96% complete at 14±103 ergs/cm2-sec. For mature cells previously grown under repeated 12-12 hr light-dark cycles, a dark period of approximately 2 hr at 22 C allowed cell division to proceed to a stage such that reillumination did not inhibit continued development of zoospores. Monochromatic light from 402 to approximately -494 nm, as compared to darkness, inhibited zoospore formation; maximal inhibition was at 432-461 nm. In contrast, monochromatic light from 522 to 726 nm stimulated zoospore formation relative to darkness. Synchronous zoospore production was obtained using the following regimes: (A) 12 hr cool-white alternated with 12 hr yellow, (B) 12 hr cool-white alternated with 12 hr blue. Under regime A synchronous zoospore release (following synchronous production) occurred near the end of the yellow irradiation period, while under regime B it occurred near the end of the cool-white irradiation period. The significance of this in terms of photoprocesses and possible photoreceptors is discussed.  相似文献   

6.
Pythium porphyrae is a fungal pathogen responsible for red rot disease of the seaweed Porphyra (Rhodophyta). Infection forecasts of Porphyra by P. porphyrae were estimated from the epidemiological observations of Porphyra thalli and numbers of zoospore of P. porphyrae in laboratory and cultivation areas. Four features of forecasting infections were determined by relating zoospore concentrations to the incidence of thallus infection; infection (in more than 1000 zoospores L−1), microscopic infection [less than 2 mm in diameter of lesion (in from 2000 to 3000 zoospores L−1)], macroscopic infection [more than 2 mm in diameter of lesion (in from 3000 to 4000 zoospores L−1), and thallus disintegration (in more than 4000 zoospores L−1). High zoospore concentrations led to more infection. The tendency that zoospore concentration of P. porphyrae increased with the rate of infection of Porphyra thalli was generally observed in forecasting infections in both the laboratory and in cultivation areas. Based on the Porphyra cultivation areas, the accuracy and consistency of forecasting infections suggest that this method could be employed to manage and control red rot disease.  相似文献   

7.
O'Kelley , J. C., and T. R. Deason . (U. Alabama, University.) Effect of nitrogen, sulfur and other factors on zoospore production by Protosiphon botryoides. Amer. Jour. Bot. 49(7): 771–777. Illus. 1962.—Nutrient-medium pH, osmotic pressure, staling products, and mineral depletion were studied in relation to zoospore production by Protosiphon botryoides in liquid media. In an intermediate range (pH 5.1–7.7), pH has little or no influence specifically on zoospore production. Although distilled water is an unsuitable medium for zoospore production, if a balanced nutrient medium is supplied, osmotic pressure is without pronounced influence over a wide range. Staling products in old cultures exert a minor inhibitory effect. Deficiencies of nitrate, sulfate, or calcium in liquid media can decrease drastically zoospore production or release, and nitrate or calcium depletion appears to be mainly responsible for loss of the capacity of Protosiphon to produce and release zoospores in aged liquid cultures.  相似文献   

8.
We investigated the structural distribution of both types of actin arrays, filaments and plaques, in a soil-borne phytopathogenic peronosporomycete (oomycete), Aphanomyces cochlioides, under standardized host-free bioassays. The phenomenon was monitored during progression through all the asexual developmental processes of the organism. It was noted that the filamentous-form of actin was predominant during the morphogenic (morphologically active) stages of development. Conversely, during non-morphogenic (morphologically quiescent) stages, plaques dominated. From these analyses, we proposed a criterion that predominance of an actin form relates to, and precedes the morphological behaviour of a cellular stage in Peronosporomycetes. A decrease in the quantity of plaques in the encysted zoospore (non-morphogenic stage) during its developmental progression into morphogenic stages, both in germination and regeneration processes, asserted the notion that plaques function as the organization centres and are related to the reorganization of cell structure and the transition of the cell into a new stage. Furthermore, polymerization of filamentous-form during emergence stages in zoospore regeneration process revealed that filaments render motility to a developing zoospore. This unprecedented function of filaments in the developing zoospores was demonstrated using nicotinamide (0.8 × 10−6 m), which did not cause actin disruption, but could induce zoospore encystment, and its further replacement with water triggered the zoospore emergence process. Additionally, by using latrunculin B, an actin polymerization inhibitor, we also demonstrated the functional necessity of actin during various developmental processes in Aphanomyces.  相似文献   

9.
Virulence of infectious pathogens can be unstable and evolve rapidly depending on the evolutionary dynamics of the organism. Experimental evolution can be used to characterize pathogen evolution, often with the underlying objective of understanding evolution of virulence. We used experimental evolution techniques (serial transfer experiments) to investigate differential growth and virulence of Batrachochytrium dendrobatidis (Bd), a fungal pathogen that causes amphibian chytridiomycosis. We tested two lineages of Bd that were derived from a single cryo‐archived isolate; one lineage (P10) was passaged 10 times, whereas the second lineage (P50) was passaged 50 times. We quantified time to zoospore release, maximum zoospore densities, and timing of zoospore activity and then modeled population growth rates. We also conducted exposure experiments with a susceptible amphibian species, the common green tree frog (Litoria caerulea) to test the differential pathogenicity. We found that the P50 lineage had shorter time to zoospore production (Tmin), faster rate of sporangia death (ds), and an overall greater intrinsic population growth rate (λ). These patterns of population growth in vitro corresponded with higher prevalence and intensities of infection in exposed Litoria caerulea, although the differences were not significant. Our results corroborate studies that suggest that Bd may be able to evolve relatively rapidly. Our findings also challenge the general assumption that pathogens will always attenuate in culture because shifts in Bd virulence may depend on laboratory culturing practices. These findings have practical implications for the laboratory maintenance of Bd isolates and underscore the importance of understanding the evolution of virulence in amphibian chytridiomycosis.  相似文献   

10.
The effect of light-dark periods, of 24 hr or longer complete cycle, on time of zoospore production by Protosiphon botryoides Klebs was investigated in unstirred flask cultures and in stirred cultures supplied 1% CO2 in air. Synchronized zoospore production was observed in both types of cultures. In stirred cultures supplied 1% CO2 a light-dark cycle of 36–12 hr gave better synchrony than did a cycle of 12–12 or 60–12 hr. Illumination by cool-white fluorescent bulbs inhibited zoospore formation strongly, possibly by inhibiting cytoplasmic cleavage in parent cells. Darkness, in comparison to illumination, promoted the formation of zoospores, and their synchronous production under alternating light-dark cycles occurred as a consequence.  相似文献   

11.
Understanding spatio‐temporal variability in recruitment is vital to studies of kelp population dynamics. Research on settlement and post‐settlement processes has suggested that arrival of kelp zoospores to suitable substrate is important in limiting kelp recruitment, yet the role of planktonic processes in kelp population dynamics has not been studied due to difficulties in sampling and identifying zoospores. I developed a method to estimate kelp zoospore abundance from in situ plankton samples and used it to study various processes regulating the availability of giant kelp (Macrocystis pyrifera) zoospores for settlement. My studies focused on (1) identifying temporal scales over which zoospore abundance is most variable, (2) describing physical and biological processes that regulate this variability, and (3) determining the relationship between zoospore abundance and settlement. I found that short‐term variability in zoospore abundance (<24 hrs) was not due to changes in supply but rather dispersion, caused by oscillating hydrodynamic forces (e.g. waves). Long‐term variability in zoospore abundance, however, was best explained by the size and density of reproductive adult plants, with zoospore abundance being most variable at the scale of days to months. Changes in adult reproductive condition caused rapid changes in zoospore abundance suggesting that the supply of kelp zoospores is sensitive to environmental regulation of adult physiology. Thus, unlike with marine animals, these results indicate that variability in kelp propagule supply, over scales most likely to affect subsequent settlement and recruitment, is more tightly coupled to demographic and reproductive mechanisms than to physical transport processes.  相似文献   

12.
This fine structural study of the quadriflagellate zoospore of Ulothrix zonata (Weber & Mohr) Kützing, with special attention to the flagellar root system, demonstrates that it is very similar to the zoospore of Ulva lactuca L. in several aspects. Common features include the presence of a cruciate root system (4-2-4-2 type), a non-striated band that connects basal bodies, a so-called terminal cap, and system I and system II striated root components. Only slight differences exist, i.e. in the shape of the terminal cap, and in the number and position of the system II root components. It is concluded that the taxonomic affinities of U. zonata lie with the Ulvaphyceae sensu Stewart and Mattox rather than with the Chlorophyceae. Additional support for this conclusion is the discovery of tiny, flat body scales on the zoospore of U. zonata. A summary of the distinctive characteristics of the Chlorophyceae, Charophyceae and Ulvaphyceae reflecting the current state of knowledge is given.  相似文献   

13.
Summary The morphological similarities between the kinetosome and the second centriole of the zoospores of Phlyctochytrium kniepii and P. punctatum (Chytridiomycetes) suggest that the second centriole in the chytrid zoospore is a vestigial flagellum base. It is suggested that the term vestigial kinetosome may also be used when referring to the structure which is presently termed the second centriole of the chytrid zoospore. Morphological similarities between the chytrid zoospores of P. kniepii and P. punctatum and the zoospores of Rhizidiomyces apophysatus (Hyphochytridiomycetes) are noted. The possible biflagellate origin of fungi with uniflagellate zoospores is discussed. The third fiber (C fiber) of the kinetosome triplet is shown to form as an outgrowth of the B fiber of the kinetosome doublet.  相似文献   

14.
Summary The flagellar apparatus and its associated structures of the zoospore ofOlpidium brassicae are described and compared with observations of other zoospores of the uniflagellatePhycomycetes. The zoospore ofO. brassicae is shown to have an extensive cone-shaped rhizoplast fused to both the functional and the vestigial kinetosomes. Three-dimensional reconstructions were made of the kinetosomal region. The vestigial kinetosome differs from the functional, as it only has triplet bundles of microtubules and it lacks a system of props. The proximal termination of the central pair of flagellar microtubules occurs within the axoneme. No terminal plate is observed. The occurrence of dictyosomes in theChytridiales, Monoblepharidales, andHyphochytriales is discussed and it is concluded that a dictyosome may be present in the encysting zoospore and the maturing zoosporangium ofO. brassicae but only vestiges of a dictyosome are to be found in the free-swimming zoospore.  相似文献   

15.
Division and plastic remodelling of the highly differentiated chromatophore inStigeoclonium stagnatile (Hazen)Collins is followed in living cells during their life cycle. In contradistinction to the unicellular algae both processes are separated: During the cell division, when the cell is growing, the highly differentiated chromatophore is simply divided without plastic remodelling and its division is finished before the nuclear division starts. The mode of the chloroplast division is identical with that of other algae. In contrast, during zoospore formation plastic remodelling of the chromatophore takes place: The lobed gutter-shaped chromatophore is transformed into a cup-like one which is adapted to the shape of the zoospore. After the zoospore has changed into a germling the cupshaped chromatophore is turned again into the original lobed gutter-like form of the vegetative cells. The precursory chromatophore division with regard to mitosis as well as the uniform mode of chromatophore division in various algae is stressed.
  相似文献   

16.
Summary The ultrastructure ofAphanomyces euteiches during the periods of zoospore motility, encystment, and germination has been studied. The motile spore has two heterokont flagella inserted laterally into the groove of the zoospore body where each is attached to a kinetosome. The kinetosomes and flagella are anchored into the zoospore body by rootlets comprised of two rows of microtubules with up to 12 microtubules in the outer row and are attached by fine threads to a striate fiber bundle. Secondary microtubules are attached at right angles at regular intervals along the rootlets. An unidentified body, 1.25m in diameter, containing helical fibers 16 nm in diameter is present in each zoospore. This body is situated near the two kinetosomes on the side of the pyriform nucleus opposite the contractile vacuole. The Golgi complex is between the nucleus and the contractile vacuole. The latter is surrounded by a 0.5–1.0m wide zone of Golgi proliferated vesicles. Ribosomes are generally absent from this region. Endoplasmic reticulum containing tubules within the expanded cisternae are also present. Vesicles with striated electron opaque inclusions and vesicles containing a granular cortex and center that developed in previous stages of zoosporogenesis were also present. During encystment of the zoospore the latter vesicles disappear. The two flagella are shed at this time leaving a membrane-bounded granular knob protruding from each of the kinetosome terminal plates. The contractile vacuole becomes disorganized and the zoospore assumes a spherical shape. Cyst wall deposition begins immediately and is completed in 30 minutes. The spore begins to germinate 1 hour following initiation of encystment with the appearance of a bulge in the cyst wall which elongates into a germ tube. Mitotic nuclear division follows.Research supported by the College of Agricultural and Life Sciences Station Project No. 1281.Research assistant and Professor. The advice and assistance of G. A. deZoeten, G. R.Gaard, and S.Vicen are most gratefully acknowledged.  相似文献   

17.
Pythium fluminum produced zoospores most abundantly at 15°C, whereas the optima forPythium group F andP. marsipium were 20 and 25°C, respectively. Increasing the incubation temperature above the optimum resulted in the decrease of the duration of zoospore production. InPythium group F the ability to produce zoospores was not lost even after incubation at 40°C for 24 h. On the other hand,P. marsipium andP. fluminum lost the ability under these conditions. Zoospore production was inhibited at pH 4.5 and 10.5 in all the species tested.Pythium fluminum andP. marsipium were found to have two pH optima for zoospore production (7.5 and 9.5 for the former and 5.5 and 8.5 for the latter). The optimum pH for zoospore production byPythium group F was 6.5–7.5. Moderate osmotic potentials (–0.27–0.47 MPa) appeared to favor zoospore production by the pythia tested. The effect of temperature, pH and osmotic potential on zoospore production was discussed in relation to pollution of pond water.  相似文献   

18.
The influence of phosphorus limitedAsterionella on the zoospore production of its fungal parasiteRhizophydium planktonicum was measured, using laboratory cultures of host and parasite. At saturated phosphorus concentrations the host reached a specific growth rate of 0.95.d–1. Growing on these host cells, the mean parasite zoospore production was 26 spores per sporangium, and the mean development time of a sporangium was 45 hours. Growing on phosphorus limited hosts, the zoospore production decreased to less then 9 spores per sporangium, and the development time decreased to 40 hours. On phosphorus limited hosts, zoospores were produced at a slower rate. The algal growth rate was reduced to a greater extent than the fungal growth rate. Therefore, it could be concluded that phosphorus limitation ofAsterionella will facilitate the development of an epidemic of its parasiteRhizophidium, at least at high diatom densities, when possible differences in infectability of the algae play a minor role.  相似文献   

19.
A strain of Tetraspora gelatinosa was isolated from a field collection and a technique for measuring quantitatively the production of zoospores was devised. The method employed compound colonies grown on agar from zoospore suspensions. The effect of 3 temperatures on zoospore production was tested: no zoospores were produced by the colonies at 3 C; zoospores were produced at 11 and 23 C and the final yield of zoospores at the 2 temperatures was not significantly different. However, at 11 C the maximum density of zoospores produced, measured by cell count, occurred after IS hr, while the maximum density at 23 C occurred after 21 hr.  相似文献   

20.
The zoospore ofOlpidium brassicae   总被引:2,自引:2,他引:0  
Summary The ultrastructure of the zoospore ofOlpidium brassicae is described and compared with observations made of other zoospores of the uniflagellatePhycomycetes. The zoospore ofO. brassicae is characterized by an extensive, cone-shaped rhizoplast and a lack of a nuclear cap, as well as a side-body complex or a rumposome. Vacuoles which contain osmiophilic material are termed gamma-like particles. Three-dimensional reconstructions based on serial sectioning were made of the organelles in the region of the nucleus, showing that the zoospore ofO. brassicae contains one or at most two elaborately branched mitochondria. Microbodies have a high degree of interconnection and are in intimate association with the mitochondrion, lipid drops, and the nuclear envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号