首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Costes E 《Annals of botany》2003,92(4):581-588
An investigation was made of the number of preformed organs in winter buds of 3-year-old reiterated complexes of the 'Granny Smith' cultivar. Winter bud content was studied with respect to bud position: terminal buds were compared on both long shoots and spurs according to branching order and shoot age, while axillary buds were compared between three zones (distal, median and proximal) along 1-year-old annual shoots in order 1. The percentage of winter buds that differentiated into inflorescences was determined and the flowers in each bud were counted for each bud category. The other organ categories considered were scales and leaf primordia. The results confirmed that a certain number of organs must be initiated before floral differentiation occurred. The minimum limit was estimated at about 15 organs on average, including scales. Total number of lateral organs formed was shown to vary with both bud position and meristem age, increasing from newly formed meristems to 1- and 2-year-old meristems on different shoot types. These differences in bud organogenesis depending on bud position, were consistent with the morphogenetic gradients observed in apple tree architecture. Axillary buds did not contain more than 15 organs on average and this low organogenetic activity of the meristems was related to a low number of flowers per bud. In contrast, the other bud categories contained more than 15 differentiated organs on average and a trade-off was observed between leaf and flower primordia. The ratio between the number of leaf and flower primordia per bud varied with shoot type. When the terminal buds on long shoots and spurs were compared, those on long shoots showed more flowers and a higher ratio of leaf to flower primordia.  相似文献   

2.
In the present work, we described the fate of proventitious epicormic buds on the trunks of 40-year-old Quercus petraea trees and in parallel the vascular trace they produced in the wood. Our results show that small and large individual epicormic buds can survive as buds for 40 years and that both are composed of a terminal meristem and scales. Meristematic areas are detected in the scale axils of small buds; in addition to these meristems the large buds also have secondary bud primordia. The small buds are connected to the pith of the main stem by a unique trace, whereas the large buds are connected by one or multiple traces. A single trace might imply that the whole bud is still alive and multiple traces might indicate that the terminal meristem has died. In the latter case, each trace is connected to a secondary bud of the large bud. The buds found in a cluster are composed of a terminal meristem and scales with axillary meristems in the scale axils. A cluster is connected to the pith of a stem either by a unique trace when it seems to be the result of partial abscission of an epicormic shoot or multiple traces when it might have originated from an epicormic bud in which the terminal meristem has died. Whatever the type of the bud, the vascular trace in the bark is composed of a cambium, secondary xylem and parenchyma cells and the trace present in the wood had parenchyma cells with vestiges of secondary xylem. Each year, the vascular trace should be produced in the bark by the cambium of the tree but not by the bud itself. On 40-year-old Q. petraea, we observed a proliferation of epicormic buds and in parallel a multiplication of the number of vascular traces in the trunk, but the knots caused by the traces of epicormic buds in the wood, either as individuals or in clusters, are minor since their colours are only slightly darker than those of woody rays and they are less than 2 mm in diameter. The knots will appear when epicormic buds develop into shoots. Received: 30 March 1999 / Accepted: 09 June 1999  相似文献   

3.
The relationship between several growth components of a shootand the fates of the axillary meristems (developing in the axilsof the leaves) borne by that shoot were studied, on first-ordershoots of young peach trees. A comprehensive picture of thoserelationships was obtained by a discriminant analysis. Shootgrowth at meristem emergence date was characterized by internodelength, leaf-production rate and leaf-unfolding duration. Allpossible fates of axillary meristems at the end of the growingseason (i.e. blind nodes, single vegetative or flower bud, budassociations, sylleptic or proleptic shoots) were considered.Shoot-elongation rate determined meristem fates quantitatively.The number of buds produced by a meristem increased when theshoot-elongation rate increased. Qualitatively, the fate of axillary meristems was related tothe balance between shoot-growth components. If the subtendingleaf unfolded slowly, sylleptic or proleptic shoots were morelikely to develop than bud associations, for high shoot-elongationrates; and flower buds were more frequent than vegetative buds,for low shoot-elongation rates. Compared to flower buds, blindnodes appeared for similar shoot-elongation rates but longerinternodes and lower leaf-production rates. The emergence dateslightly modified the relation between shoot growth and axillary-meristemfates, but the main features held true throughout the growingseason. The relationships between shoot growth and meristem fates mayresult from competitive interactions between the growing subtendingleaf and the developing axillary meristem. Growing conditionsmight also influence both shoot growth and meristem fates byfavouring either cell enlargement or cell division.Copyright1995, 1999 Academic Press Peach tree, Prunus persica (L.) Batsch, axillary meristem, meristem fate, branching, flowering, shoot growth, discriminant analysis, exploratory analysis  相似文献   

4.
In many trees, a short photoperiod (SD) triggers substantial physiological adjustments necessary for over-wintering. We have used transgenic ethylene-insensitive birches (Betula pendula), which express the Arabidopsis ethylene receptor gene ETR1 carrying the dominant mutation etr1-1, to investigate the role of ethylene in SD-induced responses in the shoot apical meristem (SAM). Under SD, the ethylene-insensitive trees ceased elongation growth comparably to the wild-type. In contrast, the formation of terminal buds, which in trees is typically induced by SD, was abolished. However, although delayed, endo-dormancy did eventually develop in the ethylene-insensitive trees. This, together with the rapid resumption of growth in the ethylene-insensitive trees after transfer from non-permissive to permissive conditions suggests that ethylene facilitates the SD-induced terminal bud formation, as well as growth arrest. In addition, apical buds of the ethylene-insensitive birch did not accumulate abscisic acid (ABA) under SD, suggesting interaction between ethylene and ABA signalling in the bud. Alterations in SAM functioning were further exemplified by reduced apical dominance and early flowering in ethylene-insensitive birches. Gene expression analysis of shoot apices revealed that the ethylene-insensitive birch lacked the marked increase in expression of a beta-xylosidase gene typical to the SD-exposed wild-type. The ethylene-dependent beta-xylosidase gene expression is hypothesized to relate to modification of cell walls in terminal buds during SD-induced growth cessation. Our results suggest that ethylene is involved in terminal bud formation and in the timely suppression of SAM activity, not only in the shoot apex, but also in axillary and reproductive meristems.  相似文献   

5.
Branch bending has been practiced for decades in China to induce flower buds in ‘Fuji’ apple. However, the optimum bending angle is yet to be elucidated. The main objectives of this study were to compare the effect of branch bending angles (70°, 90° and 110°) on the flowering and nutrient accumulation of 1-year-old shoots of ‘Fuji’ and ‘Gala’ apples and to determine the optimum branch bending angle for each cultivar. In both cultivars, the production of spurs and terminal flower buds, and the total sugar concentration and the carbon-to-nitrogen (C/N) ratio in the shoot terminals increased, whereas the N concentration decreased with increasing bending angles. The nutrient concentration was significantly higher in spurs than in medium and long shoots. The distinction between the changing patterns of C and N concentrations in the bent shoots during the growing season in our study suggested the competition of these two nutrients caused by vegetative and reproductive growth at different growing times. In ‘Fuji’ apple, the proportion of flowering buds appeared to increase more rapidly with the increase of bending angle from 70° to 110° than that in ‘Gala’ apple, and particularly a higher proportion of spurs was observed on ‘Fuji’ branches bent at a larger angle. The increase in the total sugar concentration and the C/N ratio in the shoot terminals of the bent branches might be involved in inducing floral buds after bending. The optimum bending angle was about 90° for ‘Gala’ apple and 110° for ‘Fuji’ apple, respectively. Bending could help farmers to reduce the severity of biennial fruiting in ‘Fuji’ apple.  相似文献   

6.
Main shoot and sylleptic shoot growth characteristics were measured during and after the first year of growth of 255 Telamon x Braeburn apple seedlings. Although mean main shoot growth characteristics between branched and non-branched trees were significantly different, many non-branched trees expressed similar main shoot growth to branched trees. The variables describing length, number and position of the sylleptic shoots were used to classify branched trees into architecturally different groups. A continuum from trees with few and short shoots to trees with many long shoots is observed. The release of axillary buds from apical dominance is not under complete control by the apical meristem. Genetic seedling difference at the level of roots presumably plays an important role in sylleptic branching. Genetic variation in terms of number, position, and subsequent elongation of sylleptic shoots is clearly observed.  相似文献   

7.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

8.
The effect of assimilate supply on axillary bud developmentand subsequent shoot growth was investigated in roses. Differencesin assimilate supply were imposed by differential defoliation.Fresh and dry mass of axillary buds increased with increasedassimilate supply. The growth potential of buds was studiedeither by pruning the parent shoot above the bud, by graftingthe bud or by culturing the bud in vitro. Time until bud breakwas not clearly affected by assimilate supply during bud development,Increase in assimilate supply slightly increased the numberof leaves and leaf primordia in the bud; the number of leavespreceding the flower on the shoot grown from the axillary budsubstantially increased. No difference was found in the numberof leaves preceding the flower on shoots grown from buds attachedto the parent shoot and those from buds grafted on a cutting,indicating that at the moment of release from inhibition thebud meristem became determined to produce a specific numberof leaves and to develop into a flower. Assimilate supply duringaxillary bud development increased the number of pith cells,but the final size of the pith in the subsequent shoot was largelydetermined by cell enlargement, which was dependent on assimilatesupply during shoot growth. Shoot growth after release frominhibition was affected by assimilate supply during axillarybud development only when buds sprouted attached to the parentshoot, indicating that shoot growth is, to a major extent, dependenton the assimilate supply available while growth is taking place.Copyright1994, 1999 Academic Press Assimilate supply, axillary bud, cell number, cell size, defoliation, development, growth potential, meristem programming, pith, Rosa hybrida, rose, shoot growth  相似文献   

9.
Procedures were developed for the in vitro elimination of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Sugarcane streak mosaic virus (SCSMV), Sugarcane yellow leaf virus (SCYLV) and Fiji disease virus (FDV) from infected sugarcane. In vitro shoot regeneration, elongation and virus elimination through meristem tissue culture originating from both apical and axillary shoots were compared. The average rates of regeneration and elongation from apical meristem tissues were 91 and 66%, respectively, with the virus-free rate among elongated shoots ranging from 61–92%. Mature axillary buds were cultivated in vitro to produce axillary shoots, from which meristem tissues were excised and cultured. These meristem tissues regenerated (77–100%) and elongated (55–88%) in culture medium at approximately the same rate as the apical meristems. The average virus elimination rate was 90% among elongated shoots derived from mature axillary buds. All five viruses can be eliminated by meristem tissue culture from both apical and axillary shoots using a standardized procedure. The overall average efficiency of virus-free plant production was 45 and 58% from apical and axillary shoots, respectively. There were no significant differences for shoot induction or virus elimination when the meristems were harvested from either the apical or the axillary shoots. This is the first report of SrMV or SCSMV elimination from sugarcane, as well as elimination of any mixed virus infections. This new method of harvesting meristems from axillary buds greatly expands the amount of material available for therapeutic treatments and thereby increases the probability of eliminating viruses from infected sugarcane.  相似文献   

10.
BACKGROUND AND AIMS: To understand better the basic growth characteristics of pines and the fundamental properties of the shoot apical meristem (SAM), variations within the shoot apex of buds were studied. METHODS: A detailed structural comparison of meristem dimensions, organogenetic activity, and the presence of lipids, starch grains and tannins was performed on shoot apices of juvenile, and male and female adult Pinus pinaster at five different times in the annual growth cycle. KEY RESULTS: There were significant correlations among traits and differences in the pattern for juvenile and adult shoots. In juvenile shoots, peaks of organogenesis were present in spring and autumn, but not in summer. In adult shoots, one peak, characterized by an increase in meristem dimensions, was present in summer. The accumulation of starch grains beneath the SAM and of tannin in sub-apical pith parenchyma were at their maximum when organogenetic activity was high in spring and autumn in juvenile plants, and in summer in adult plants. In juvenile and adult plants, lipids were stored within the SAM in autumn, filling a large part of the bud in winter, and were depleted in the cortical parenchyma and then in the pith during shoot elongation. CONCLUSIONS: Depending on the sites of accumulation within the SAM and on the stage of the annual growth cycle, lipids, starch and tannins may be involved in different processes. In spring, energy and structural materials released by lipid hydrolysis may contribute to stem elongation and/or cell-to-cell communication. During organogenesis, energy and structural materials released by starch hydrolysis may influence developmental programmes in the SAM and adjacent cells. Tannins may be involved in cellular detoxification. At the end of the growing season, accumulation of lipid and starch is positively correlated with the onset of dormancy.  相似文献   

11.

Key message

In two apple cultivars, fruit set was due to primigenic dominance within the annual shoot in areas with insufficient winter chilling while positional dominance took precedence when chilling was sufficient.

Abstract

The purpose of our study was to use fruit set and inflorescence size to characterize the positional (position along the shoot) and/or temporal (relative time of budburst and flowering) influences on competition between reproductive laterals within an annual shoot. The relative time of budburst and flowering, and the relative position within the shoot of reproductive buds were recorded on 2-year-old shoots of ‘Granny Smith’ and ‘Golden Delicious’ apple (Malus × domestica (Borkh.)) trees. The trees were grown at two locations in South Africa, a cool area, Koue Bokkeveld, and a warm area, Warm Bokkeveld, with sufficient and insufficient winter chilling, respectively. Inflorescence size (leaf number, leaf area, and flower number) did not differ temporally or with position. For both cultivars, fruit set in the cool area was acrotonic and independent of relative flowering time, while it was more influenced by temporal (primigenic) dominance in the warm area. Therefore, there is a clear positional advantage within the shoot to fruit set in cool areas (i.e., better local climate conditions for the growing fruit), while there is a clear temporal advantage (first bud to burst sets a fruit), or a “first come, first serve” approach to fruit set, in warm areas, which have limited and delayed budbreak. Inflorescence size and fruit set indicate a separation of environmental (degree of winter chilling) and innate factors in competition among reproductive buds along the 2-year-old annual shoot.  相似文献   

12.
TOMPSETT  P. B. 《Annals of botany》1978,42(4):889-900
Vegetative shoots from the base of the crown, and from partsof the tree likely to form male or female buds, were collectedfrom 40–years–old trees of Picea sitchensis (Bong.)Carr. throughout the 1973–4 annual growth cycle. The morphologyand growth rates of the terminal buds on these shoots were assessed. Bud scale primordia were formed most quickly in the female position,at an intermediate rate in the male position and most slowlyin the basal vegetative position during April, May and June.In July and early August the apical meristems swelled to formdomes and continued to grow at the same relative rates in themale, female and basal vegetative positions. Reproductive budswere first morphologically distinct in late August and sporangiaappeared in October. Dormancy, defined by the pause in apicalvolume increase, extended from mid-October to mid–March.Young strobili grew much faster than basal vegetative shootsof the same age between mid–March and bud burst in lateApril. Throughout the growth cycle, external changes in budsize reflected changes in size of the apical meristem, youngstrobihis or young vegetative shoot inside the bud. It is proposed that the rate of growth of an apical meristemmay be causally related to the type of bud which subsequentlydevelops from it. Sitka spruce, Picea sitchensis, bud development, morphology, growth of apical dome, flowering  相似文献   

13.
The study was focused on changes of anatomical and histochemical parameters of buds of 4-year-old Norway spruce (Picea abies L. Karst) trees subjected to simulated acid rain (SAR). Solutions of pH 2.9 and 3.9 were applied by spraying on shoot and/or by watering for two years. No macroscopic changes of buds or needles were observed in connection with SAR application and the only induced change was 2-week earlier onset of bud break in all treated variants compared to the control. Two-year treatment caused decrease in number of leaf primordia and increase in number of living bud scales in treated dormant buds while these parameters remained unchanged in the control buds. Treatments with solution of pH 2.9 caused decrease of flatness of bud apical meristem during the vegetative season. Increased activity of non-specific esterase in treated buds occurred during dormancy and bud break and the enhanced accumulation of phenolic compounds was detected at the beginning of shoot growth. Changes in histochemical parameters of bud tissues were induced mainly by spraying of shoots and can thus be qualified as primary damage.  相似文献   

14.
Experiments with the growth regulator ethephon (2-chloroethylphosphonic acid) were made to stimulate the flower differentiation in the ‘Carola’ and ‘Golden Delicious’ apple cultivars in Pillnitz (GDR) and ‘Jonathan’ and ‘Golden Delicious’ in Ujfehértó (Hungaria). A twofold application of 150 ppm ethephon in June proved most effective. Our results indicate that it is possible to promote flower differentiation in apple trees without growth retardation and fruit thinning.  相似文献   

15.
16.
棉花花芽分化及部分内源激素变化规律的研究   总被引:12,自引:2,他引:12  
棉花(Gossypium hirsutum)的腋芽原基,有的将来发育成叶枝;有的将来发育成果枝。这2种不同命运的腋芽,在其刚分化的初期就表现出了不同的解剖学特征。将来发育为叶枝的腋芽,其生长锥呈圆锥形或扁圆球形,体积较小,原套层数为1-2层;而将来发育为果枝的腋芽,其生长锥为圆柱形,顶端表面平坦,体积较大,原套层数为2-3层。从子叶展平后到肉眼可见花芽(现蕾),连续测茎尖的内源ABA及IAA的含量  相似文献   

17.
Ulex europaeus is a much-branched shrub with small, narrow, spine-tipped leaves and axillary thorn shoots. The origin and development of axillary shoots was studied as a basis for understanding the changes that occur in the axillary shoot apex as it differentiates into a thorn. Axillary bud primordia are derived from detached portions of the apical meristem of the primary shoot. Bud primordia in the axils of juvenile leaves on seedlings develop as leafy shoots while those in the axils of adult leaves become thorns. A variable degree of vegetative development prior to thorn differentiation is exhibited among these secondary thorn shoots even on the same axis. Commonly the meristems of secondary axillary shoots initiate 3–9 bracteal leaves with tertiary axillary buds before differentiating as thorns. In other cases the meristems develop a greater number of leaves and tertiary buds as thorn differentiation is delayed. The initial stages in the differentiation of secondary shoot meristems as thorns are detected between plastochrons 10–20, depending on vigor of the parent shoot. A study of successive lateral buds on a shoot shows an abrupt conversion from vegetative development to thorn differentiation. The conversion involves the termination of meristematic activity of the apex and cessation of leaf initiation. Within the apex a vertical elongation of cells of the rib meristem initials and their immediate derivatives commences the attenuation of the apex which results in the pointed thorn. All cells of the apex elongate parallel to the axis and proceed to sclerify basipetally. Back of the apex some cortical cells in which cell division has persisted longer differentiate as chlorenchyma. Although no new leaves are initiated during the extension of the apex, provascular strands are present in the thorn tip. Fibrovascular bundles and bundles of cortical fibers not associated with vascular tissue differentiate in the thorn tip and are correlated in position with successive incipient leaves in the expected phyllotactic sequence, the more developed bundles being related to the first incipient leaves. Some secondary shoots displayed variable atypical patterns of meristem differentiation such as abrupt conversion of the apex resulting in sclerification with limited cell elongation and small, inhibited leaves. These observations raise questions concerning the nature of thorn induction and the commitment of meristems to thorns.  相似文献   

18.
19.
The morphology of winter buds, shoot growth and branching architecturewas studied in evergreen broad-leaved trees of subtropical/warm-temperaterain forests of southern and central Japan. Winter buds werecategorized into three types based on external morphology anddevelopmental processes: naked, hypsophyllary and scaled buds.Each shoot tip with intermittent growth was covered with a smallnumber of immature leaves or hypsophylls when growth ceased.Hypsophylls protect the apical meristem during its resting period,hence we termed them hypsophyllary buds. In trees with nakedbuds, immature leaves resumed their growth and developed tomature leaves the following spring; thus these trees had nospecial organs to cover shoot tips during winter. In trees withhypsophyllary buds, some hypsophylls covering the shoot tipsthrough the year were shed without further growth when new shootsstarted to grow in the spring. In trees with scaled buds, newlygrowing shoots had hypsophyllary buds at their tips in spring.After the completion of stem elongation, the buds were replacedby scaled buds (often covered with more than 30 scales) in summer.These scaled buds grew during autumn and winter until a newflush of growth the following spring. The three bud types correspondedto forest stratification in the northern-limit forest: the nakedbuds of Rubiaceae and Myrsinaceae in the ground layer; the hypsophyllarybuds of various families (e.g. Symplocaceae, Myrsinaceae) inthe understorey; and the scaled buds of Fagaceae and Lauraceaein the forest canopy. The position and activity of buds on abranch were reflected in the architectural patterns of the treesin different layers of the forest. The scaled-bud trees hadwell-protected, abundant axillary buds and are probably suitedto survive in the forest canopy (with frequent disturbances),whereas the single terminal bud of hypsophyllary-bud trees cansurvive in the less disturbed, resource-limited understoreyof the forest.Copyright 1998 Annals of Botany Company Bud structural type; bud formation; bud growth; shoot elongation; shoot-growth cycle; branching architecture; forest stratification.  相似文献   

20.
One-year-old ‘Golden Delicious’ apple trees grafted onto MM 106 rootstocks were injected in the rootstock stem (shank) with14C-uniconazole to determine the extent to which uniconazole is translocated and degraded over the length of an average growing season. In 4 months, 16% of recovered14C-activity was translocated to the new shoots. Most of the14C-activity remained in the rootstock. Chromatographic evaluation of shoot extracts demonstrated that the14C-activity associated with uniconazole decreased 49% in 4 months. However, shoot growth was still inhibited which suggests that the amount of uniconazole that was degraded did not interfere with the inhibition of gibberellin biosynthesis, probably due to the continuous translocation of uniconazole that occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号