首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary Restriction fragment patterns of DNA fragments obtained after EcoRI cleavage of chloroplastic (cp) and mitochondrial (mt) DNAs isolated from different wheat species were compared. T. aestivum, T. timopheevi, Ae. speltoides, Ae. sharonensis and T. urartu gave species specific mt DNA patterns. Consequently, the cytoplasmic genomes of wheat cannot have originated from contemporary Ae. speltoides, Ae. sharonensis and T. urartu species. It is shown that cp and mt DNAs of Ae. ventricosa, a tetraploid used to transfer eyespot resistance into T. aestivum, contains cp and mt DNAs differing from DNAs isolated from T. aestivum and other wheats. In contrast, the cytoplasmic DNAs of Ae. ventricosa and Ae. squarrosa reveal an important homology, suggesting that Ae. squarrosa was the female parent of Ae. ventricosa. Disomic addition lines (T. aestivum — Ae. ventricosa) in both Ae. ventricosa cytoplasm and T. aestivum cytoplasm contained cytoplasmic DNAs identical to those of the maternal parent. Restriction patterns of the cp and mt DNAs isolated from eight lines of Triticale differing in their cytoplasm have been compared to those of the maternal parent. A strict maternal inheritance has been observed in each case.  相似文献   

2.
Summary The genetic theory ofMcFadden andSears regarding the origin of spelt and related wheats is defended. This theory postulates thatT. spelta arose fromT. dicoccum (orT. dicoccoides) x Ae. squarrosa in the natural area of the latter. This hybrid became a component of a mixed crop of emmer and einkorn, but only a fractional one, and this medley was brought to southwestern Germany and northern Switzerland, where conditions particularly favorable to spelt caused it to emerge as a major crop.
Zusammenfassung Die genetische Theorie vonMcFadden undSears über den Ursprung des Spelzes und verwandter Weizen wird unterstützt. Nach dieser Theorie istT. spelta aus der KreuzungT. dicoccum (oderT. dicoccoides) x Ae. squarrosa im natürlichen Areal vonAe. squarrosa entstanden. Diese Hybride wurde ein, allerdings nur in Spuren vorhandener Bestandteil einer aus Emmer und Einkorn bestehenden Mischkultur, und dieses Gemisch gelangte nach Südwestdeutschland und der nördlichen Schweiz, wo für den Spelz besonders günstige Bedingungen zu seiner Entwicklung als selbständige Kulturpflanze führten.
  相似文献   

3.
Summary The diversity of high molecular weight (HMW) glutenin subunits of 502 varieties of durum wheat (Triticum durum) from 23 countries was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Twenty-nine types of patterns were observed with 18 mobility bands. A total of 18 alleles were identified by comparing the mobilities of their subunits to those previously found in hexaploid wheat (T. aestivum) and in Triticum turgidum var. dicoccum. Five new alleles were detected: two on the Glu A1 and three on the Glu B1 locus. Comparison of the frequency of alleles in the three species T. aestivum, T. dicoccum and T. durum was investigated. Significant differences exist between each of these species on the basis of the frequency distributions of their three and four common alleles at the Glu A1 and Glu B1 locus, respectively. The Glu B1c allele occuring very frequently in hexaploid wheats was not found in the two tetraploid species. More than 83% of the T. durum analysed were found to have the Glu A1c (null) allele.  相似文献   

4.
Summary Putative D genome donors for Aegilops cylindrica (2n = 28, CCDD) and Triticum aestivum (2n = 42, AABBDD) were studied with the isoelectric focusing patterns of esterase isozymes. 103 strains of Ae. cylindrica were uniform in their isozyme pattern. 30 strains of the putative parent, Ae. caudata, showed no zymogram variation, whereas the other parent, Ae. squarrosa, comprised 3 phenotypes. Natural Ae. cylindrica had an isozyme pattern which corresponded to a mixture of esterases from Ae. caudata and type 3 Ae. squarrosa. Therefore, it is concluded that the D genome donor of Ae. cylindrica is derived from type 3 Ae. squarrosa. These results suggest that Ae. cylindrica originated with a single amphiploidy event, and the C and D genomes have remained remarkably constant regarding esterase isozyme composition.On the other hand, T. aestivum comprised three zymogram phenotypes. These phenotypes contain bands which can be ascribed to the D genome of type 2 Ae. squarrosa. These results suggest that the D genome of Ae. cylindrica differs from that of T. aestivum. Evolution of the AB and D genomes of T. aestivum is indicated by the zymogram polymorphism. The origin of Ae. cylindrica is possibly more recent than that of T. aestivum.Contribution No. 433 of the Laboratory of Genetics, Faculty of Agriculture, Kyoto University  相似文献   

5.
Summary Nitrate reductase activity (NR activity), protein content (NR protein) and polypeptides were compared in shoots of Triticum aestivum ssp. vulgare (L.) cv Fidel (bread wheat, AABBDD genome), Triticum dicoccum cv Vernal (AABB genome), Aegilops squarrosa var. strangulata (DD genome) and the amphiploid 365 (AABBDD genome), produced by crossing T. dicoccum cv Vernal and Ae. squarrosa var. strangulata. Constitutive NR protein and activity were found in shoots of all seedlings grown without nitrate, with the highest activity in the bread wheat. The inducible NR protein and activity developed upon the addition of nitrate. A 116-K polypeptide was identified as the main component of the NR from the bread wheat, while a faint, sometimes discernable 94-K band appeared on Western blots. Only one NR polypeptide could be identified in Ae. squarrosa —the 94 K. An intermediary situation was observed with the tetraploid T. dicoccum and the amphiploid: The 94-K polypeptide was the only one separated from NR of seedlings grown in the absence of nitrate. The 116-K polypeptide appeared after the addition of nitrate. The intensity of its band on the gel increased with the duration of the nitrate treatment. When comparing Ae. squarrosa and T. dicoccum, the constitutive isozyme (94-K polypeptide) was found in the D as well as in the AB genomes, while the inducible NR (116-K polypeptide) was absent from the D genome. Addition of the D genome into the AB genome slightly reinforced the expression of the inducible form (AB genome expression) in the amphiploid wheat. We postulate that the inducible form of NR in the bread wheat resulted from an evolutionary selection pressure favoured by cultivation.  相似文献   

6.
Inorganic cation concentrations were measured in shoots of hexaploidbread wheat (Triticum aestivum L.) and its presumed ancestorsgrown at 100 mol m–3 external NaCl. Aegilops squarrosaand T. aestivum had high K/Na ratios while T. dicoccoides andAe. speltoides had low K/Na ratios. T. monococcum although havinga high K/Na ratio, had the highest total salt load of the fivespecies tested. The effect of the D genome (from Ae. squarrosa)was further investigated in seedlings of synthetic hexaploidwheats, and was again found to improve cation selectivity. Differentresponses were obtained from root and shoot tissue in this experiment.One synthetic hexaploid and its constituent parents were grownto maturity at 100 mol m-3 NaCl and the yields recorded. Despitecomplications due to increased tillering in the stressed hexaploid,it was possible to show that the addition of the D genome enhancedyield characteristics in the hexaploid wheat. An experimentwith synthetic hexaploids derived from the tetraploid wheatvariety "Langdon" and several Ae. squarrosa accessions revealeddifferences in vegetative growth rates between the differentsynthetic hexaploids in the presence or absence of 150 or 200mol m–3 external NaCl. The possibility of transferringsalt tolerance genes from Ae. squarrosa to hexaploid wheat usingsynthetic hexaploids as bridging species is discussed. Key words: Salt stress, wheat, D genome, Aegiops squarrosa, synthetic hexaploids  相似文献   

7.
Summary The transfer of cytoplasms of various Triticum and Aegilops species to a hexaploid triticale (Rosner) has been attempted using 30 alloplasmic lines and a euplasmic line of common wheat as cytoplasmic donors. The average rate of F1 hybrid production (seed setting rateXgermination rate) following an ordinary method of crossing is only 0.09%, whereas this rate is increased to 3.1% by use of embryo culture. The first backcross of the F1 plants with triticale pollen is again difficult, the hybrid production being 0.9%. Further backcrosses proceed smoothly in most cases. As a consequence, the following seven cytoplasms have been transferred to triticale: T. dicoccum, T. aestivum, Ae. squarrosa, Ae. cylindrica, Ae. juvenalis, Ae. ovata and Ae. speltoides. None of these alien cytoplasms causes more meiotic instability than does the triticale's own cytoplasm. Two cytoplasms of T. dicoccum and T. aestivum, both belonging to the B plasma type, have no effect upon any of triticale's characters. Two D type cytoplasms of Ae. squarrosa and Ae. cylindrica cause about 50% reduction of male fertility but exert no other remarkable effects. This fact suggests a partial functional compensation of the effect of a 1D chromosome upon interacting with D cytoplasm by a rye chromosome substituting for it in triticale. A D2 cytoplasm of Ae. juvenalis causes earlier heading and complete male sterility, accompanied by some reduction of growth vigor. An M0 type cytoplasm of Ae. ovata and an S type cytoplasm of Ae. speltoides cause a great heading delay, complete male sterility, and severe reduction of vigor. From the viewpoint of triticale breeding, none of these cytoplasms appears superior to the triticale's own cytoplasm. However, from the viewpoint of genetics, the hexaploid triticale is an effective tester for differentiating the B, S, and D plasma types.Contribution No. 466 from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan  相似文献   

8.
Summary An immunological reaction, precipitation in gel, was produced using a rabbit antiserum directed to a specific protein constantly present in bread wheats (T. aestivum, genome AABBDD), but absent in durum wheat (T. durum Desf., genome AABB). This protein was isolated in the soluble-protein fraction of bread wheat caryopses by combined biochemical and immunological techniques.The availability of such a specific anti-bread wheat serum made possible the analysis of a series of varieties and species of wheat and of some closely related (Secale, Aegilops) and less closely related (Hordeum, Haynaldia) taxa to determine whether the protein was present or absent. Hordeum vulgare, Haynaldia villosa, Triticum monoccocum and Triticum turgidum gave a negative result, while positive results were obtained in T. aestivum, T. timopheevi, T. zhukovskyi, Secale cereale, Aegilops speltoides, Ae. mutica, Ae. comosa, Ae. caudata, Ae. umbellulata, Ae. squarrosa, and also in the artificial amphiploids (Ae. speltoides x T. monococcum) and (Ae. caudata x T. monococcum).It is concluded that these results agree closely with the classification of Triticum proposed by MacKey in 1966. The investigated protein not only permits the differentiation of T. aestivum from T. turgidum, but also T. turgidum from T. timopheevi at tetraploid level and T. monococcum from all the diploid species of Aegilops.  相似文献   

9.
Protein inhibitors extracted with water from seeds of Triticum and genetically related species were characterized according to their apparent molecular weights, electrophoretic mobilities and their specificities in inhibiting α-amylases from human saliva and Tenebrio molitor L. larvae. No detectable amylase inhibition activity was found in extracts from diploid wheats, whereas in all tetraploid and hexaploid wheats as well as in the Aegilops species tested we found several amylase inhibitor groups of different molecular weights. In each group, several inhibitor components slightly different in their electrophoretic mobilities, but identical in their inhibition behaviour toward amylases from different origins have been shown. Both from the qualitative and quantitative standpoints, amylase protein inhibitors from hexaploid wheats were the summation of those from tetraploid wheats plus the ones from Aegilops squarrosa. Amylase inhibitors from Aegilops speltoides largely differed from those extracted from tetraploid wheats as well as from all the amylase inhibitors described in plant seeds up to now. These results indicate a relevant homology between the amylase inhibitor coding genes of the D wheat genome and those of the D Aegilops genome and confirm that Ae. squarrosa is the donor of the whole D genome to hexaploid wheats. They also suggest that Ae. speltoides is not the donor of the B genome to polyploid wheats, although a not yet identified Aegilops species might be such a donor.  相似文献   

10.
Ion concentrations were measured in the leaves of synthetichexaploid wheats and their parents growing in saline hydroponicculture. The synthetic hexaploids contained genomes from a tetraploidwheat (Triticum diccocum, T. durum, T. araraticum or T. timopheevi)and from a diploid species (T. monococcum, T. urartu, T. boeoticumor Aegilops squarrosa). Leaf Na concentrations were low, andK concentrations high, in Ae. squarrosa, T. araraticum and allof the synthetic hexaploids, but high in T. dicoccum and T.durum. At low salinities leaf Na concentrations were particularlyhigh in T. durum in comparison with the other species. Theseresults suggest that the enhanced K/Na discrimination character,originally found in Ae. squarrosa and BBAADD genome hexaploidwheats, is also present in diploid wheat and in GGAA genometetraploid wheats. It is suggested that this character has beenlost in the evolution of the BBAA genome tetraploid wheats. Key words: Salt, ion transport, A genome, Triticum spp  相似文献   

11.
To investigate the evolution and geographical origins of hexaploid wheat, we examined a 284 bp sequence from the promoter region of the GluDy locus, coding for the y subunit of high-molecular-weight glutenin. Fourteen different alleles were found in 100 accessions of Aegilops tauschii and 169 of Triticum aestivum. Two alleles were present in both species; the other 7 alleles from Ae. tauschii and 5 from T. aestivum were unique to their respective species. The two shared alleles differed at only one nucleotide position within the region sequenced, but their apparent association with the common haplotypes GluD1a and GluD1d, which have substantial differences within their GluDy coding regions, makes it unlikely that the alleles evolved independently in Ae. tauschii and T. aestivum. The results therefore support previous studies which suggest that there were at least two Ae. tauschii sources that contributed germplasm to the D genome of T. aestivum. The number of alleles present in T. aestivum, and the nucleotide diversity of these alleles, indicates that this region of the D genome has undergone relatively rapid change since polyploidisation. Ae. tauschii from Syria and Turkey had relatively high nucleotide diversity and possessed all the major GluDy alleles, indicating that these populations are probably ancient and not the result of adventive spread. The presence in the Turkish population of both of the shared alleles suggests that hexaploid wheat is likely to have originated in southeast Turkey or northern Syria, within the Fertile Crescent and near to the farming villages at which archaeological remains of hexaploid wheats are first found. A second, more recent, hexaploidisation probably occurred in Iran.  相似文献   

12.
Crude seed-protein extracts of wheat and wheat relatives were fractionated by electrophoresis on polyacrylamide gels. Homology of fractions in the resulting spectra was used as a criterion of genetic affinity among the species and among their genomes. The spectra of Triticum monococcum (AA), T. dicoccum (AABB) and T. aestivum (AABBDD) confirmed evidence from conventional methods that the A and B genomes are different, that the dicoccum A genome is only partially homologous with the monococcum genome, and that the affinity between T. dicoccum and T. aestivum involves the A and B genomes about equally. They also showed the monococcum genome to have more affinity with the aestivum A or both A and D, than with the dicoccum A genome. Protein homologies permitted discrimination of distant as well as close affinities: the spectra of T. monococcum (AA) and Secale cereale (EE) showed no homologous fractions (r = 0.05), while the spectra of T. dicoccum and T. durum (both AABB) showed 10 homologous and 5 sub-homologous fractions out of 15 (r = 0.92). Previous evidence that an amphiploid spectrum comprises essentially the sum of the fractions in its parental spectra was verified by the dissimilar spectra of T. aestivum (AABBDD) and S. cereale (EE) which accounted for all of the fractions of their amphiploid hybrid, Triticale (AABBDDEE). The effect of each parent upon the amphiploid spectrum was proportional to the number of genomes it contributes.  相似文献   

13.
Summary The genes coding for the Rubisco small subunit (SSU) and for the -subunit of the Rubisco-binding protein were located to chromosome arms of common wheat. HindIII-digested total DNA from the hexaploid cultivar Chinese Spring and from ditelosomic and nullisomic-tetrasomic lines was probed with these two genes, whose chromosomal location was deduced from the disappearance of or from changes in the relative intensity of the relevant band(s). The Rubisco SSU pattern consisted of 14 bands, containing at least 21 different types of DNA fragments, which were allocated to two homoeologous groups: 15 to the short arm of group 2 chromosomes (4 to 2AS, 7 to 2BS, and 4 to 2DS) and 6 to the long arm of group 5 chromosomes (2 on each of arms 5AL, 5BL, and 5DL). The pattern of the Rubisco-binding protein consisted of three bands, each containing one type of fragment. These fragments were located to be on the short arm of group 2 chromosomes. The restriction fragment length polymorphism (RFLP) patterns of several hexaploid and tetraploid lines were highly conserved, whereas the patterns of several of their diploid progenitors were more variable. The variations found in the polyploid species were mainly confined to the B genome. The patterns of the diploids T. monococcum var. urartu and Ae. squarrosa were similar to those of the A and D genome, respectively, in polyploid wheats. The pattern of T. monococcum var. boeoticum was different from the patterns of the A genome, and the patterns of the diploids Ae. speltoides, Ae. longissima, and Ae. Searsii differed from that of the B genome.  相似文献   

14.
Summary Many related species and strains of common wheat were compared by matching differences among their mitochondrial genomes with their parent nuclear genomes. We examined three species of Aegilops, section Sitopsis (Ae. bicornis, Ae. sharonensis, and Ae. speltoides), emmer wheat (Triticum dicoccoides, T. dicoccum, and T. durum), common wheat (T. spelta, T. aestivum, and T. compaction), and timopheevi wheat (T. araraticum, T. timopheevi, and T. zhukovskyi). A single source of the cytoplasm was used in all the species, except Ae. speltoides (two sources), T. araraticum (two), and T. aestivum (three). Following restriction endonuclease analyses, the mitochondrial genomes were found to comprise seven types, and a dendrogram showing their genetic relatedness was constructed, based upon the percentage of common restriction fragments. MtDNAs from T. dicoccum, T. durum, T. aestivum, and T. compactum yielded identical restriction fragment patterns; these differed from T. dicoccoides and T. spelta mtDNAs in only 2.3% of their fragments. The fragment patterns of T. timopheevi and T. zhukovskyi were identical, and these differed from T. araraticum mtDNA by only one fragment. In both the emmer-dinkel and timopheevi groups, mitochondrial genome differentiation is evident, suggesting a diphyletic origin of each group. MtDNAs from four accessions of the Sitopsis species of Aegilops differ greatly from one another, but those of Ae. bicornis, Ae. sharonensis, and Ae. searsii, belonging to the same subsection Emarginata, are relatively similar. MtDNAs of timopheevi species are identical, or nearly so, to those of Ae. speltoides accession (09), suggesting that the latter was the cytoplasm donor to the former, polyploid group. The origin of this polyploid group seems to be rather recent in that the diploid and polyploid species possess nearly identical mitochondrial genomes. We cannot determine, with precision, the cytoplasm donor to the emmer-dinkel group. However, our results do suggest that mitochondrial DNAs show larger evolutionary divergence than do the ctDNAs from these same strains.Contribution no. 507 from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan  相似文献   

15.
Single populations of three hexaploid species of wheat, Triticumaestivum, Triticum spelta and Triticum macha, and two populationsof the tetraploid wheat, Triticum dicoccum (Pontus and Bordeaux),were grown in a greenhouse experiment at a range of soil floodingregimes: free draining, two levels of transient flooding andcontinuous flooding. Increasing severity of flooding treatment resulted in increasedsoil reduction and an increase in the concentration of reducediron and manganese in the experimental soil, and also resultedin a reduction in vegetative growth, number of inflorescences,grain number and grain weight. There were, however, large differencesbetween the wheat populations in the degree of reduction inyield caused by flooding. The population of T. macha was muchmore flooding-tolerant than the other hexaploid species andthe ‘Pontus’ population of the emmer wheat, T. dicoccum,was more tolerant than the ‘Bordeaux’ populationof this species and than T. spelta and T. aestivum. The results are discussed in relation to the origin of the populations. Soil flooding, Triticum aeslivum, Triticum macha, Triticum spelta, Triticum dicoccum  相似文献   

16.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

17.
Summary Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E0.58/E0.64. The slowest isoenzyme, E0.58, is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. Chinese Spring and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E0.64, is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E0.56/E0.71, whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E0.58/E0.64 (the commonest), E0.58/E0.71, E0.45/E0.58, E0.48/E0.58 and E0.56/E0.58 recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E0.58/E0.64. Ae. cylindrica and polyploid goatgrasses of the Cu-genome group, excepting Ae. kotschyi, are homozygous for E0.64. Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E0.56/E0.64 and A0.49/A0.56.  相似文献   

18.
Summary Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome.  相似文献   

19.
Summary Endosperm protein components from common bread wheats (Triticum aestivum L.) and related species were extracted with aluminum lactate, pH 3.2, and examined by electrophoresis in the same buffer. Electrophoretic patterns of the albumins and globulins were compared to evaluate the possibility that a particular species might have contributed its genome to tetraploid or hexaploid wheat. Together with protein component mobilities, differential band staining with Coomassie Brilliant Blue R250 was employed to test the identity or non-identity of bands. Eight species and 63 accessions, representative of Triticum and Aegilops were tested. Considerable intraspecific variation was observed for patterns of diploid but not for tetraploid or hexaploid species. Patterns of some accessions of Triticum urartu agreed closely with major parts of the patterns of Triticum dicoccoides and T. aestivum. A fast-moving, green band was found in all accessions of T. urartu and of Triticum boeoticum, however, that was not found in those of T. dicoccoides or T. aestivum. This band was present in all accessions of Triticum araraticum and Triticum zhukovskyi. Patterns of Aegilops longissima, which has been suggested as the donor of the B genome, differed substantially from those of T. dicoccoides and T. aestivum. Finally, two marker proteins of intermediate mobility were also observed and may be used to discriminate between accessions of T. araraticum/T. zhukovskyi and those of T. dicoccoides/T. aestivum.  相似文献   

20.
To elucidate the phylogenetic relationships and cytoplasmic types, restriction endonuclease fragment patterns of chloroplast (cp) and mitochondrial (mt) DNAs isolated from two different accessions of Dasypyrum villosum (L.) candargy were compared with those of tetraploid wheat (Triticum durum Desf., PI265007), hexaploid wheat (Triticum aestivum L., cv Chinese Spring), Aegilops longissimum (S. and M., in Muschli) Bowden and Hordeum vulgare L. T. aestivum and T. durum had identical restriction patterns for their cp and mtDNAs in digestions with four different enzymes. Likewise, no differences were found between the restriction fragment patterns of two accessions of D. villosum. But, there were distinct differences in chloroplast and mitochondrial DNA restriction fragment patterns between D. villosum and tetraploid and hexaploid wheats. A. longissimum (G609) showed a similar pattern to those wheats for PstI digestion of cpDNA. Organellar DNA from Hordeum vulgare (cv Himalaya) showed a distinctly different restriction pattern from those of wheat and D. villosum. These results suggest that D. villosum is unlikely to be the donor of cytoplasm to wheats, and its cytoplasmic organelles were also different from those of A. longissimum.Contribution No. 92-522-J from the Kansas Agricultural Experiment Station; Kansas State University, Manhattan, Kansas, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号