首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
An analysis conducted at nine stream/river sites in the Atlantic Forest region in the State of Paraná, Brazil used macroinvertebrate functional feeding group (FFG) assessments to evaluate ecological condition of the sites. The FFG approach categorizes qualitative macroinvertebrate collections according to their morphological-behavioral adaptations for food acquisition (e.g. scrapers that harvest non-filamentous, attached algae from stable surfaces in flowing water). FFG ratios were employed as surrogates for stream/river ecosystem attributes: balance between autotrophy and heterotrophy; linkage between riparian inputs of coarse particulate organic matter and in-stream food webs; relative dominance of fine particulate organic matter in transport (suspended load) compared to that deposited in the sediments; and geomorphic stability of the channel. The analyses indicated that all nine sites were heterotrophic, six of the nine carried expected levels of suspended organic load and showed below expected linkage with riparian inputs, and in only two were stable substrates limiting. The implications of the findings and recommendations for further analysis and modifications of the protocol are discussed.  相似文献   

2.
River beads refer to retention zones within a river network that typically occur within wider, lower gradient segments of the river valley. In lowland, floodplain rivers that have been channelized and leveed, beads can also be segments of the river in which engineering has not reduced lateral channel mobility and channel-floodplain connectivity. Decades of channel engineering and flow regulation have reduced the spatial heterogeneity and associated ecosystem functions of beads occurring throughout river networks from headwaters to large, lowland rivers. We discuss the processes that create and maintain spatial heterogeneity within river beads, including examples of beads along mountain streams of the Southern Rockies in which large wood and beaver dams are primary drivers of heterogeneity. We illustrate how spatial heterogeneity of channels and floodplains within beads facilitates storage of organic carbon; retention of water, solutes, sediment, and particulate organic matter; nutrient uptake; biomass and biodiversity; and resilience to disturbance. We conclude by discussing the implications of river beads for understanding solute and particulate organic matter dynamics within river networks and the implications for river management. We also highlight gaps in current understanding of river form and function related to river beads. River beads provide an example of how geomorphic understanding of river corridor form and process can be used to restore retention and resilience within human-altered river networks.  相似文献   

3.
The utilization of food resources by aquatic consumers reflects the structure and functioning of river food webs. In lotic water systems, where food availability and predator–prey relationships vary with gradient changes in physical conditions, understanding diet assimilation by local communities is important for ecosystem conservation. In the subtropical Liuxi River, southern China, the relative contribution of basal resources to the diet assimilation of functional feeding groups (FFGs) was determined by stable carbon (13C) and nitrogen (15N) isotope analyses. The output of Bayesian mixing models showed that diatom‐dominated periphyton (epilithic biofilm), aquatic C3 plants (submerged hydrophytes), and suspended particulate organic matter (SPOM) associated with terrestrial C3 plants contributed the most to the diet assimilation of FFGs in the upper, middle, and lower reaches, respectively. The relative contribution of consumer diet assimilation was weighted by the biomass (wet weight, g/m2) of each FFG to reflect resource utilization at the assemblage level. From the upper to the lower reaches, the spatial variation in the diet assimilation of fish and invertebrate assemblages could be summarized as a longitudinal decrease in periphyton (from 57%–76% to <3%) and an increase in SPOM (from <7% to 51%–68%) with a notable midstream increase in aquatic C3 plants (23%–48%). These results indicate that instream consumers in the Liuxi River rely more on autochthonous production (e.g., periphyton and submerged hydrophytes) than on terrestrially derived allochthonous matter (e.g., terrestrial plants). The pattern of resource utilization by consumers in the mid‐upper Liuxi River is consistent with findings from other open subtropical and neotropical rivers and provides evidence for the riverine productivity model. Our study indicates that protecting inherent producers in rivers (e.g., periphyton and submerged hydrophytes) and restoring their associated habitats (e.g., riffles with cobble substrate) are conducive to aquatic ecosystem management.  相似文献   

4.
The objective of the presented study is the development of a spatially explicit approach for mapping ecosystem services (MapES) by using specific knowledge about the Cerrado biome (Brazilian Savanna). This biome covers an area of about 2 million km2, i.e. nearly 24% of the total area of Brazil, and has come under substantial pressure during the last 50 years caused by strong land-use/land-cover change, mostly due to agricultural expansion and urbanization. Because of its fast transformation rate, there is an enormous demand for knowledge, and its application, about the effects of land-use/land-cover on the capacity of providing or maintaining ecosystem services. The MapES approach was developed using a vast existing knowledge base. After analyzing and structuring this knowledge the relationships between land-use/land-cover and the potential to provide or maintain eight ecosystem services (Erosion Control, Runoff Control, Water Supply, Water Quality Maintenance, Soil Quality Maintenance, Biodiversity Maintenance, Food Production and Energy Production) were parametrized. In addition, the approach was developed as spatially explicit by including landscape properties (soil, slope and distance to river network) in the cell based system. A reference map of potential natural vegetation and a land use map for 2013 for a meso-scale experimental catchment (32.7 km2) were produced. The catchment was used as an example to apply the approach, i.e. assessing and visualizing changes from before human interference to the current land use situation. Finally, a procedure for assessing the potential impacts of land-use/land-cover on ecosystem services considering the methodological limitations of the respective monitoring. The presented approach is easy to understand, to modify and to adapt to other situations and might be therefore used in other context of decision support. It might also help to fill the gap between land use planning and numeric modeling using very complex tools.  相似文献   

5.
Phytoplankton and associated environmental factors were collected fortnightly during a 1-year cycle in the upper and lower reaches of the River Adige (northeastern Italy). The river has a typical Alpine flow, with the period of high flow and flooding occurring in the spring and summer months. Phytoplankton biomass was constrained by physical variables, mainly water discharge and associated variables directly linked to water fluxes. These factors acted negatively and synchronously by diluting phytoplankton cells and worsening the light regime. Nutrient concentrations did not appear to limit phytoplankton growth. Compared to many other central European rivers, the very low maximum algal biomasses supported by River Adige (Chl a < 7 μg l−1) are due to the Alpine flow regime, which is characterised by higher flow during the warmer months, when conditions for algal development are more favourable. Hydrology and flow regime, along with the channelisation of the river, caused development of a simplified phytoplankton community, which was almost exclusively composed of diatoms. Moreover, these factors contributed significantly to the lack of ordered and cyclic temporal patterns in phytoplankton dynamics. In fact, the gradient of species composition showed a strong association with hydrological factors. If the scenarios predicting increase of atmospheric temperatures and decrease of atmospheric precipitations and water availability in the regions south of the Alps are realistic, algal biomasses may rise and be associated with an increase of groups other than diatoms.  相似文献   

6.
生态系统服务供给与需求能力存在显著的空间异质性与空间失衡,对区域经济发展与环境保护产生巨大影响。以长三角城市群区县为研究单元,分别核算其生态系统服务供给与需求值,引入梯度分析,分析生态系统服务供给与需求的空间特征,并基于供求分析提出长三角城市群生态格局分区方案,且针对性地提出相应片区的发展策略,为长三角城市群土地利用规划、区域协调发展提供科学依据。研究结果表明:(1)长三角城市群生态系统服务供给能力与土地利用类型密切相关,呈现从北到南逐渐升高趋势;(2)长三角城市群生态系统服务需求能力与社会经济发展联系紧密,在长江入海口附近形成生态系统服务需求高值区,然后向外围递减;(3)沪宁杭庐发展梯度带上,生态系统服务供需大致呈现负相关趋势;(4)基于生态系统服务供需关系构建,得到长三角城市群生态格局四大分区:生态保育区(高供给-高需求),生态修复区(低供给-高需求),生态重塑区(低供给-低需求),生态开发区(高供给-低需求)。  相似文献   

7.
Abstract Integration of habitat heterogeneity into spatially realistic metapopulation approaches reveals the potential for key cross-scale interactions. Broad-scale environmental gradients and land-use practices can create autocorrelation of habitat quality of suitable patches at intermediate spatial scales. Patch occupancy then depends not only on habitat quality at the patch scale but also on feedbacks from surrounding neighborhoods of autocorrelated patches. Metapopulation dynamics emerge from how demographic and dispersal processes interact with relevant habitat heterogeneity. We provide an empirical example from a metapopulation of round-tailed muskrats (Neofiber alleni) in which habitat quality of suitable patches was spatially autocorrelated most strongly within 1,000 m, which was within the expected dispersal range of the species. After controlling for factors typically considered in metapopulation studies—patch size, local patch quality, patch connectivity—we use a cross-variogram analysis to demonstrate that patch occupancy by muskrats was correlated with habitat quality across scales ≤1,171 m. We also discuss general consequences of spatial heterogeneity of habitat quality for metapopulations related to potential cross-scale interactions. We focus on spatially correlated extinctions and metapopulation persistence, hierarchical scaling of source–sink dynamics, and dispersal decisions by individuals in relation to information constraints.  相似文献   

8.
9.
Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).  相似文献   

10.
Linking hydrologic interactions with global carbon cycling will reduce the uncertainty associated with scaling-up empirical studies and facilitate the incorporation of terrestrial–aquatic linkages within global and regional change models. Much of the uncertainty in estimates of carbon fluxes associated with precipitation and hydrologic transport results from the extensive spatial and temporal heterogeneity in both intrinsic functioning and anthropogenic modification of hydrological cycles. To better understand this variation we developed a landscape ecological approach to coupled hydrologic–carbon cycling that merges local mechanisms with multiple-scale spatial heterogeneity. This spatially explicit framework is applied to examine variability in hydrologic influences on carbon cycling along a continental scale water availability gradient with an explicit consideration of human sources of variability. Hydrologic variation is an important component of the uncertainty in carbon cycling; accounting for this variation will improve understanding of current conditions and projections of future ecosystem responses to global change.  相似文献   

11.
王强  袁兴中  刘红  庞旭  王志坚  张耀光 《生态学报》2014,34(6):1548-1558
河流生境是河流生态系统的重要组成部分,是河流生物赖以生存的基础。以位于三峡库区腹心区域的典型山区河流东河为研究对象,采用河流生境调查(RHS)方法调查河流生境,选择河流生境质量评价指数(HQA)、河流生境退化指数(HMS)评估河流生境现状,分析生境质量和人为干扰的空间分布规律。结果表明,51个河段的HQA值介于24—66之间。29.4%河段的HQA为优,29.4%为良,23.5%为中,9.8%为较差,7.8%为差。从HMS看,7.8%的河段保持较自然状态,19.6%受到轻微的破坏,41.2%退化明显,27.5%退化严重,3.9%受到剧烈破坏。HQA与HMS存在显著的负相关关系。东河上、中、下游河段的HQA无明显差异,但HMS差异显著。从干扰来源看,东河上游和中游河流生境主要受引水式小水电、沿河公路、河道采砂影响。东河下游河流生境受高强度的土地开发(农业用地、建设用地),河道采砂,河堤、排污管、桥梁等水工构筑物的修建和三峡水库水位的波动影响。RHS评价结果能较直观地反映河流生境状况,以及导致河流生境质量衰退的原因。  相似文献   

12.
Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.  相似文献   

13.
Ecosystem metabolism, that is, gross primary productivity (GPP) and ecosystem respiration (ER), controls organic carbon (OC) cycling in stream and river networks and is expected to vary predictably with network position. However, estimates of metabolism in small streams outnumber those from rivers such that there are limited empirical data comparing metabolism across a range of stream and river sizes. We measured metabolism in 14 rivers (discharge range 14–84 m3 s?1) in the Western and Midwestern United States (US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station oxygen model solved in a Bayesian framework. GPP ranged from 0.6–22 g O2 m?2 d?1 and ER tracked GPP, suggesting that autotrophic production supports much of riverine ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas exchange estimates from these 14 rivers in agreement with empirical models. Carbon turnover lengths (that is, the distance traveled before OC is mineralized to CO2) ranged from 38 to 1190 km, with the longest turnover lengths in high-sediment, arid-land rivers. We also compared estimated turnover lengths with the relative length of the river segment between major tributaries or lakes; the mean ratio of carbon turnover length to river length was 1.6, demonstrating that rivers can mineralize much of the OC load along their length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d?1, and were not different than measurements from small streams. Given high GPP relative to ER, combined with generally short OC spiraling lengths, rivers can be highly reactive with regard to OC cycling.  相似文献   

14.
Conventional analysis of spatially correlated data in inadequately blocked field genetic trials may give erroneous results that would seriously affect breeding decisions. Forest genetic trials are commonly very large and strongly heterogeneous, so adjustments for micro-environmental heterogeneity become indispensable. This study explores the use of geostatistics to account for the spatial autocorrelation in four Pinus pinaster Ait. progeny trials established on hilly and irregular terrains with a randomized complete block design and large blocks. Data of five different traits assessed at age 8 were adjusted using an iterative method based on semivariograms and kriging, and the effects on estimates of variance components, heritability, and family effects were evaluated in relation to conventional analysis. Almost all studied traits showed nonrandom spatial structures. Therefore, after the adjustments for spatial autocorrelation, the block and family × block variance components, which were extremely high in the conventional analysis, almost disappeared. The reduction of the interaction variance was recovered by the family variance component, resulting in higher heritability estimates. The removal of the spatial autocorrelation also affected the estimation of family effects, resulting in important changes in family ranks after the spatial adjustments. Comparison among families was also greatly improved due to higher accuracy of the family effect estimations. The analysis improvement was larger for growth traits, which showed the strongest spatial heterogeneity, but was also evident for other traits such as straightness or number of whorls. The present paper demonstrates how spatial autocorrelation can drastically affect the analysis of forest genetic trials with large blocks. The iterative kriging procedure presented in this paper is a promising tool to account for this spatial heterogeneity.  相似文献   

15.
The structure of food webs along river networks   总被引:1,自引:0,他引:1  
Do changes in the species composition of riverine fish assemblages along river networks lead to predictable changes in food‐web structure? We assembled empirical “fish‐centered” river food webs for three rivers located along a latitudinal gradient in the South Saskatchewan River Basin (SSRB) that differ in land‐use impacts and geomorphology but flow through similar mountain, foothill, and prairie physiographic regions. We then calculated 17 food‐web properties to determine whether the nine river food webs differed according to physiographic region or river sub‐basin. There were no statistically significant differences in the 17 food‐web properties calculated among the rivers. In contrast, fish species richness, connectance, the proportion of herbivores, and the proportion of cannibals changed longitudinally along the river network. Our results suggest that regional changes in river geomorphology and physicochemistry play an important role in determining longitudinal variation in food‐web properties such as fish species richness and connectance. In contrast, the overall structure of river food webs may be relatively similar and insensitive to regional influences such as zoogeography. Further explorations of river and other food webs would greatly illuminate this suggestion.  相似文献   

16.
Understanding human disturbance regimes is crucial for developing effective conservation and ecosystem management plans and for targeting ecological research to areas that define scarce ecosystem services. We evaluate and develop a forecasting model for land-use change in the Southern Appalachians. We extend previous efforts by (a) addressing the spatial diffusion of human populations, approximated by building density, (b) examining a long time period (40 years, which is epochal in economic terms), and (c) explicitly testing the forecasting power of the models. The resulting model, defined by linking a negative binomial regression model of building density with a logit model of land cover, was fit using spatially referenced data from four study sites in the Southern Appalachians. All fitted equations were significant, and coefficient estimates indicated that topographic features as well as location significantly shape population diffusion and land use across these landscapes. This is especially evident in the study sites that have experienced development pressure over the last 40 years. Model estimates also indicate significant spatial autocorrelation in land-use observations. Forecast performance of the models was evaluated by using a separate validation data set for each study area. Depending on the land-use classification scheme, the models correctly predicted between 68% and 89% of observed land uses. Tests based on information theory reject the hypothesis that the models have no explanatory power, and measures of entropy and information gain indicate that the estimated models explain between 47% and 66% of uncertainty regarding land-use classification. Overall, these results indicate that modeling land-cover change alone may not be useful over the long run, because changing land cover reflects the outcomes of more than one human process (for example, agricultural decline and population growth). Here, additional information was gained by addressing the spatial spread of human populations. Furthermore, coarse-scale measures of the human drivers of landscape change (for example, population growth measured at the county level) appear to be poor predictors of changes realized at finer scales. Simulations demonstrate how this type of approach might be used to target scarce resources for conservation and research efforts into ecosystem effects. Received 13 March 1998; accepted 30 September 1998  相似文献   

17.
The river domain: why are there more species halfway up the river?   总被引:2,自引:0,他引:2  
Biologists have long noted higher levels of species diversity in the longitudinal middle‐courses of river systems and have proposed many explanations. As a new explanation for this widespread pattern, we suggest that many middle‐course peaks in richness may be, at least in part, a consequence of geometric constraints on the location of species’ ranges along river courses, considering river headwaters and mouths as boundaries for the taxa considered. We demonstrate this extension of the mid‐domain effect (MDE) to river systems for riparian plants along two rivers in Sweden, where a previous study found a middle‐course peak in richness of natural (non‐ruderal) species. We compare patterns of empirical richness of these species to null model predictions of species richness along the two river systems and to spatial patterns for six environmental variables (channel width, substrate fineness, substrate heterogeneity, ice scour, bank height, and bank area). In addition, we examine the independent prediction of mid‐domain effects models that species with large ranges, because the location of their ranges is more constrained, are more likely to produce a mid‐domain peak in richness than are species with small ranges. Species richness patterns of riparian plants were best predicted by models including both null model predictions and environmental variables. When species were divided into large‐ranged and small‐ranged groups, the mid‐domain effect was more prominent and the null model predictions were a better fit to the empirical richness patterns of large‐ranged species than those of small‐ranged species. Our results suggest that the peak in riparian plant species richness in the middle courses of the rivers studied can be explained by an underlying mid‐domain effect (driven by geometric constraints on large‐ranged species), together with environmental effects on richness patterns (particularly on small‐ranged species). We suggest that the mid‐domain effect may help to explain similar middle‐course richness peaks along other rivers.  相似文献   

18.
19.
The aim of this paper was to investigate the potential for using functional feeding groups (FFGs) as indicators of water quality conditions in rivers, using the Buffalo River, South Africa, as a specific example. Multivariate classification and ordination techniques were used to investigate species and FFG distributions in relation to a number of physico-chemical variables at 16 sites from the headwaters to the estuary of the Buffalo River.Two-way indicator species analysis (TWINSPAN) of species composition ranked most of the sites sequentially down the river, irrespective of water quality conditions. Ordination of FFGs from a set of riffle samples collected in mid-late summer showed only weak relationships between FFG distribution and water quality changes, except where variables changed sequentially down the river (e.g. pH and temperature). Individual species responses to water quality gradients were examined for nine riffle-dwelling species representing diverse FFGs. Following correspondence analysis of a matrix of environmental variables and species frequencies, some species showed strong associations with defined ranges of some variables. In particular, Adenophlebia auriculata (Leptophlebiidae, Ephemeroptera) from the headwater sampling site, was associated with low pH and low temperature. Simulium damnosum occurred under conditions of high turbidity, while Afronurus harrisoni was found under high concentrations of potassium, ammonium and nitrite ions.We conclude that although there was a distinct headwaters fauna in the Buffalo River, and sequential downstream changes in species composition, most FFGs (apart from shredders) were represented down the whole length of the river. FFG classifications are therefore unlikely to provide useful indications of water quality conditions in the Buffalo River.Using a categorical approach to classifying water quality variables, and by applying correspondence analysis to the resulting matrix, we recognised nine species that could be used to define water quality. These indicator species can be used to define tolerance ranges of the fauna for water quality conditions in different parts of the Buffalo river.  相似文献   

20.
River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step‐wise boosted regression trees based on 250 m raster grid cells. Species‐specific models were built for both ‘moderate’ and ‘extreme’ future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7–2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56–85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species turnovers and range shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号