首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人参、西洋参能通过根系分泌三萜皂苷等化感物质,严重影响后茬人参的生长,但对人参以外的植物是否具有化感效应尚不清楚。本实验研究了不同质量浓度的人参皂苷对小麦、白菜、黄瓜及绿豆4种常见栽培作物早期根系发育的影响,结果发现人参皂苷处理液(25、50和100mg·L-1)对4种作物主根及不定根的发育影响不尽相同。随着处理质量浓度的升高,小麦、白菜、黄瓜根系活力分别比同组CK明显降低,根长、根鲜重也呈降低趋势。各浓度人参皂苷处理对黄瓜和绿豆下胚轴不定根的数量、根长、根鲜重及根系活力的影响均未达到显著水平,但二者抗氧化酶的活性都微有升高。总之,人参皂苷对4种栽培作物的主根发育均有抑制作用,尤其对小麦、黄瓜主根生长的抑制作用较强;但对黄瓜和绿豆不定根发育的影响不明显。  相似文献   

2.
人参、西洋参能通过根系分泌三萜皂苷等化感物质,严重影响后茬人参的生长,但对人参以外的植物是否具有化感效应尚不清楚.本实验研究了不同质量浓度的人参皂苷对小麦、白菜、黄瓜及绿豆4种常见栽培作物早期根系发育的影响,结果发现人参皂苷处理液(25、50和100 mg· L-1)对4种作物主根及不定根的发育影响不尽相同.随着处理质量浓度的升高,小麦、白菜、黄瓜根系活力分别比同组CK明显降低,根长、根鲜重也呈降低趋势.各浓度人参皂苷处理对黄瓜和绿豆下胚轴不定根的数量、根长、根鲜重及根系活力的影响均未达到显著水平,但二者抗氧化酶的活性都微有升高.总之,人参皂苷对4种栽培作物的主根发育均有抑制作用,尤其对小麦、黄瓜主根生长的抑制作用较强;但对黄瓜和绿豆不定根发育的影响不明显.  相似文献   

3.
Root hydrotropism of an agravitropic pea mutant, ageotropum   总被引:3,自引:0,他引:3  
We have partially characterized root hydrotropism of an agravitropic pea mutant, ageotropum (from Pisum sativum L. cv. Weibull's Weitor), without interference of gravitropism. Lowering the atmospheric air humidity inhibited root elongation and caused root curvature toward the moisture-saturated substrate in ageotropum pea. Removal of root tips approximately 1.5 mm in length blocked the hydrotropic response. A computer-assisted image analysis showed that the hydrotropic curvature in the roots of ageotropum pea was chiefly due to a greater inhibition of elongation on the humid side than the dry side of the roots. Similarly, gravitropic curvature of Alaska pea roots resulted from inhibition of elongation on the lower side of the horizontally placed roots, while the upper side of the roots maintained a normal growth rate. Gravitropic bending of Alaska pea roots was apparent 30 min after stimulation, whereas differential growth as well as curvature in positive root hydrotropism of ageotropum pea became visible 4–5 h after the continuous hydrostimulation. Application of 2,3,5-triiodobenzoic acid or ethyleneglycol-bis-( β -aminoethylether)-N,N,N',N'-tetraacetic acid was inhibitory to both root hydrotropism of ageotropum pea and root gravitropism of Alaska pea. Some mutual response mechanism for both hydrotropism and gravitropism may exist in roots, although the stimulusperception mechanisms differ from one another.  相似文献   

4.
The impact of exogenously applied galactoglucomannan oligosaccharides (GGMOs) and their structurally modified forms (GGMOs-r—galactoglucomannosyl alditols, GGMOs-g—with reduced galactose content) on the growth of mung bean (Vigna radiata (L.) Wilczek) intact plants cultured in hydroponics has been determined. GGMOs alone or in combination with exogenously added IBA have influenced (with stimulation and/or inhibition effect) hypocotyl and seminal root elongation, adventitious and lateral roots formation and elongation in dependency on their concentration used. The inhibition of elongation growth in hypocotyls as well as in roots was connected with changes of cell wall-associated peroxidases activity and is probably associated with the beginning of cell wall rigidification. Data presented in this paper confirm the hypothesis that exogenously added GGMOs may have antiauxin activity and may interact also with endogenous growth regulators. Certain monosaccharide sequences with terminal galactose in the side chain of GGMOs probably play important role in their biological activity in intact plants as it was demonstrated previously in individual parts of plants.  相似文献   

5.
Elongation of seminal and lateral roots of rice seedlings was markedly inhibited by high ammonium levels in growth medium. However, high exogenous nitrate concentrations had little inhibitory effect on root growth. The objective of this study was to elucidate the relationship between inhibition of rice root growth induced by high ammonium conditions and ammonium assimilation in the seedlings. Activity of glutamine synthetase (GS) was kept at a low level in the seminal roots of the seedlings grown under high nitrate levels. In contrast, high ammonium levels significantly enhanced the GS activity in the roots, so that Gln abundantly accumulated in the shoots. These results indicate that ammonium assimilation may be activated in the seminal roots under high ammonium conditions. Application of methionine sulfoximine (MSO), an inhibitor of GS, relieved the repression of the seminal root elongation induced by high ammonium concentrations. However, the elongation of lateral roots remained inhibited even under the same condition. Furthermore, MSO drastically increased ammonium level and remarkably decreased Gln level in the shoots grown under high ammonium conditions. These results show that, for rice seedlings, an assimilatory product of ammonium, and not ammonium itself, may serve as an endogenous indicator of the nitrogen status involved in the inhibition of seminal root elongation induced by high levels of exogenous ammonium.  相似文献   

6.
The present study investigated the effect of ferulic acid (FA; 0–1000 µM) on early growth, and rhizogenesis in mung bean (Vigna radiata) hypocotyls and associated biochemical changes. FA severely affected the radicle elongation and number of secondary roots after 72 h. The root and shoot length, number and length of secondary roots, and seedling dry weight of one-week-old seedlings of mung bean were decreased by 64%. The rooting potential (percent rooting, number and length of adventitious roots) of mung bean hypocotyls under in vitro conditions was significantly inhibited in response to 1–100 µM FA. At 1000 µM there was complete cessation of rooting. FA caused a reduction in the contents of water-soluble proteins and endogenous total phenolics, whereas the activities of proteases, peroxidases, and polyphenol peroxidases increased. The study concludes that FA inhibits root growth and development, and in vitro rooting process in mung bean by interfering with biochemical processes that are crucial for root formation.  相似文献   

7.
Vierheilig  H.  Alt-Hug  M.  Engel-Streitwolf  R.  Mäder  P.  Wiemken  A. 《Plant and Soil》1998,203(1):137-144
The effects of tomato and bean rhizospheres on hyphal spreading of the arbuscular mycorrhizal (AM) fungus Glomus mosseae were studied using a soil compartment system in combination with hydrophobic polytetrafluorethylene (PTFE) membranes. Both the nylon screen and the PTFE membrane were freely permeable to hyphae but not to roots. Furthermore, the hydrophobic PTFE membrane seemed to be a barrier to the flux of soil solutions containing root exudates. The results show that water soluble exudates of tomato and bean roots greatly stimulate hyphal growth in the soil compartment system used. Moreover, water soluble root exudates of bean exert a clear attractional effect on AM hyphal growth.  相似文献   

8.
Ascorbate levels and redox states, as well as the activities of the enzymes of ascorbate metabolism, were analyzed in roots of tomato seedlings during the culture on a medium supplemented with auxin and compared to the control cultured on an auxin-free medium. Biochemical parameters were determined separately in the distal part of the root where the inhibitory effect of auxin on root elongation growth is observed and in the proximal half on the organ which reacts to auxin treatment with increased lateral root proliferation. ASC peroxidase activity was found to be stimulated by auxin treatment in the lateral-root forming part of the root. This effect was not observed in the distal part of the organ. On the other hand, ASC oxidase activity was raised by auxin exclusively in the distal part of the root. An inhibitory effect of auxin supplementation to the medium on ASC—reducing enzymes was observed. The dehydroascorbate reductase activity was found to be inhibited by auxin only in the proximal part, while the activity of monodehydroascorbate reductase in both, the proximal and distal parts of the root. Ascorbate content increased in roots during culture irrespective of the presence of auxin. However, auxin treatment resulted in higher DHA levels and more significant participation of DHA in the total ascorbate pool when compared to the control grown on the auxin-free medium. Similar to auxin, adding DHA to the culture medium stimulated lateral root formation and inhibited primary root elongation. In contrast to DHA, ASC treatment affected significantly neither lateral root formation nor primary root growth and partly reversed the stimulatory effect of IAA on root formation and the inhibitory effect on root elongation. These results suggest that auxin induced changes in ascorbate metabolism may be involved in developmental reactions in tomato roots.  相似文献   

9.
Penetration of very strong soils by seedling roots of different plant species   总被引:19,自引:2,他引:17  
The abilities of seedling roots of twenty-two plant species to penetrate a strong growth medium were compared under controlled conditions. Seedlings were grown for 10 days in compression chambers filled with siliceous sandy soil at 0.2 kg kg–1 water content and mean penetrometer resistance of 4.2 MPa. Root elongation and thickening were measured after growth. The results show that soil strength reduced the elongation of roots of all plant species by over 90% and caused the diameters of the roots to increase compared with control plants grown in vermiculite (0 MPa resistance).Differences in both root elongation and root diameter were observed among plant species. Generally, the roots of dicotyledons (with large diameters) penetrated the strong medium more than graminaceous monocotyledons (with smaller diameters). There was a significant positive correlation (r=0.78, p<0.05) between root diameter and elongation over all the species in the stressed plants. The species were ranked according to the relative root elongation and relative root thickening. Based on this ranking, lupin (Lupinus angustifolius), medic (Medicago scutelata) and faba bean (Vicia faba) were the species with the greatest thickening and elongation while wheat (Triticum aestivum), rhodesgrass (Chloris gayana) and barley (Hordeum vulgare) had the least. The weight of the seeds did not seem to influence either the thickening or elongation of the roots.  相似文献   

10.
Ferrara G  Loffredo E  Senesi N 《Planta》2006,223(5):910-916
The effects of the endocrine disruptor bisphenol A (BPA) at concentrations of 10 and 50 mg l−1 were evaluated on the germination and morphology, micronuclei (MN) content in root tip cells and BPA bioaccumulation of hydroponic seedlings of broad bean (Vicia faba L.), tomato (Lycopersicon esculentum Mill.), durum wheat (Triticum durum Desf.) and lettuce (Lactuca sativa L.) after 6 and 21 days of growth. In general, BPA at any dose used did not inhibit germination and early growth (6 days) of seedlings of the species examined, with the exception of primary root length of tomato which decreased at the higher BPA dose. In contrast, an evident phytotoxicity was induced by BPA in all species after 21 days of growth with evident morphological anomalies and significant reductions of the lengths and fresh and dry weights of shoots and roots of seedlings. With respect to the nutrient medium without seedlings, BPA concentration decreased markedly during the growth period in the presence of broad bean and tomato seedlings, and limitedly in the presence of durum wheat and, especially, lettuce. Further, the presence of BPA measured in roots and shoots of broad bean and tomato after 21-day growth indicated that bioaccumulation of BPA had occurred. The number of MN in broad bean and durum wheat root tip cells increased markedly by treatment with BPA at both concentrations, thus suggesting a potential clastogenic activity of BPA in these species.  相似文献   

11.
Ethylene as a possible mediator of light-induced inhibition of root growth   总被引:1,自引:0,他引:1  
Eliasson, L. and Bollmark, M. 1988. Ethylene as a possible mediator of light-induced inhibition of root growth. - Physiol. Plant. 72: 605–609.
Pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the possible role of ethylene in light-induced inhibition of root elongation. Illumination of the roots with white light inhibited root elongation by 40–50% and increased ethylene production by the roots about 4-fold. Our main approach was to use exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), supplied in the growth solution, to monitor ethylene production of the roots independent of light treatment. Ethylene production of excised root tips increased with increasing ACC concentrations. The rate of ethylene production in dark-grown roots treated with 0.1 μ M ACC was similar to that caused by illumination. Low ACC concentrations (0.01–0.1 μ M ) decreased the rate of root elongation, especially in seedlings grown in the dark, and 0.1 μ M ACC inhibited elongation to about the same extent as light. In light the roots curved and grew partly plagiogravitropically. This effect was also simulated by the 0.1 μ M ACC treatment. At 1 μ M and higher concentrations, ACC inhibited root growth almost completely and caused conspicuous curvatures of the root tips both in light and darkness. Inhibitors of ethylene synthesis and action partially counteracted the inhibition of root elongation caused by light. These observations suggest that the increase in ethylene production caused by light is at least partly responsible for the decreased growth of light-exposed roots.  相似文献   

12.
Many crops grow well on neutral or weakly acidic soils. The ability of roots to elongate under high‐external pH would be advantageous for the survival of plants on alkaline soil. We found that root elongation was promoted in some plant species in alkaline‐nutrient solution. Barley, but not tomato, root growth was maintained in pH 8 nutrient solution. Fe and Mn were absorbed well from the pH 8 nutrient solution by both barley and tomato plants, suggesting that the different growth responses of these two species may not be caused by insolubilization of transition metals. The ability of intact barley and tomato plants to acidify external solution was comparable; in both species, this ability decreased in plants exposed to pH 8 nutrient solution for 1 w. Conversely, cell proliferation and elongation in barley root apices were facilitated at pH 8 as shown by microscopy and cell‐cycle‐related gene‐expression data; this was not observed in tomato. We propose that barley adapts to alkaline stress by increasing root development.  相似文献   

13.
We reported that elongation growth of plant shoots and roots is suppressed by hypergravity, with the rate decreasing in proportion to logarithm of the magnitude of gravity. In hypergravity-induced growth inhibition of shoots, graviperception is supposed to be independent of that in gravitropism and to involve mechanoreceptors. However, the graviperception mechanism in the hypergravity-induced growth inhibition of roots is not known. In the present study, we compared the mechanism in the hypergravity-induced growth inhibition of roots with that in gravitropism. The removal of root cap did not influence hypergravity-induced growth inhibition of roots, although the gravitropic curvature was completely inhibited. Hypergravity had no effects on growth of azuki bean roots in the presence of lanthanum or gadolinium, which are blockers of mechanoreceptors. On the contrary, lanthanum or gadolinium at the same concentration did not influence gravitropism of roots. These results suggest that the graviperception mechanism in the hypergravity-induced growth inhibition of roots is independent of that in gravitropism. Hypergravity-induced growth inhibition of azuki bean roots was observed irrespective of the direction of stimuli, which disappeared in the presence of lanthanum or gadolinium. Thus, in the hypergravity-induced growth inhibition, roots may perceive the gravity signal by mechanoreceptors on the plasma membrane independently of the direction of stimuli, and may utilize it to regulate their growth rate.  相似文献   

14.
Hormonal control of root growth was studied in Lemna minor. Although addition of gibberellic acid (GA3) to the culture medium did not promote the root growth, a gibberellin biosynthesis inhibitor, uniconazole P (Un-P), significantly inhibited root growth. Both length and diameter of roots in Un-P-treated plants were significantly smaller than those in control plants, mainly caused by inhibition of cell division. In epidermal cells, the length was slightly decreased and the width increased by Un-P treatment, indicating inhibition of elongation growth. GA3 completely nullified the inhibition caused by Un-P. Transverse cortical microtubules (CMTs) of epidermal cells in the elongation zone were significantly fragmented by treatment with Un-P, but not by that in the presence of GA3. The cellulose microfibril array in the Un-P-treated cells was more random and more oblique than that in the control cells. These results suggested that root growth in L. minor is regulated by endogenous gibberellin.  相似文献   

15.
Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth promotion and postembryonic root development. B. megaterium inoculation caused an inhibition in primary-root growth followed by an increase in lateral-root number, lateral-root growth, and root-hair length. Detailed cellular analyses revealed that primary root-growth inhibition was caused both by a reduction in cell elongation and by reduction of cell proliferation in the root meristem. To study the contribution of auxin and ethylene signaling pathways in the alterations in root-system architecture elicited by B. megaterium, a suite of plant hormone mutants of Arabidopsis, including aux1-7, axr4-1, eir1, etr1, ein2, and rhd6, defective in either auxin or ethylene signaling, were evaluated for their responses to inoculation with this bacteria. When inoculated, all mutant lines tested showed increased biomass production. Moreover, aux1-7 and eir1, which sustain limited root-hair and lateral-root formation when grown in uninoculated medium, were found to increase the number of lateral roots and to develop long root hairs when inoculated with B. megaterium. The ethylene-signaling mutants etr1 and ein2 showed an induction in lateral-root formation and root-hair growth in response to bacterial inoculation. Taken together, our results suggest that plant-growth promotion and root-architectural alterations by B. megaterium may involve auxin- and-ethylene independent mechanisms.  相似文献   

16.
Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.  相似文献   

17.
Cytokinins as inhibitors of root growth   总被引:2,自引:0,他引:2  
The elongation of roots of wheat ( Triticum aestivum L. cv. Diamant II), flax ( Linum usitatissimum L. cv. Concurrent) and cucumber ( Cucumis sativus L. cv. Favör) seedlings in the dark was strongly inhibited by various native and synthetic cytokinins (kinetin, benzyladenine, isopentenyladenine, zeatin and their corresponding 9-ribosides). An inhibition of 50% was obtained for wheat roots with 3 · 10−9 M zeatin and for flax roots with 6 · 10−9 M isopentenyladenine. The ribosides were in all cases less inhibitory. The inhibition was reversed by various types of 'antiauxins' and 'antiethylenes' (such as structural auxin analogues, uncouplers, specific inhibitors of ethylene synthesis, free radical scavengers, inhibitors of ethylene action). These substances as a rule counteract also inhibitions caused by auxins. Auxins and cytokinins stimulate ethylene production synergistically, and the similar inhibitory effects of these two types of hormone can be understood if it is assumed that their effect is at least partly mediated through ethylene. The cytokinins must be considered as possible natural inhibitors and regulators of root growth.  相似文献   

18.
The in vitro effects of an aqueous leachate (1%) of Callicarpa acuminata Kunth. (Verbenaceae) on radicle growth, protein expression, catalase activity, free radical production and membrane lipid peroxidation in roots of bean, maize, and tomato were examined. Aqueous extract of C. acuminata inhibited the radicle growth of tomato by 47%, but had no effect on root growth of maize and beans. 2D-PAGE and densitometry analysis showed that C. acuminata aqueous leachate modified the expression of various proteins in the roots of all treated plants. In treated bean roots, microsequencing analysis of an 11.3-kDa protein, whose expression was enhanced by leachate treatment, revealed a 99% similarity with subunits of α -amylase inhibitor of other beans. A 27.5-kDa protein induced in treated tomato showed 69–95% similarity to glutathione- S -transferases (GST) of other Solanaceae. Spectrophotometric analysis and native gels revealed that catalase activity was increased by 2.2-fold in tomato roots and 1.4-fold in bean roots. No significant changes were observed in treated maize roots. Luminol chemiluminescence levels, a measure of free radicals, increased 3.8-fold in treated tomato roots and 2.1-fold in treated bean roots. Oxidative membrane damage in treated roots was measured by lipid peroxidation rates. In tomato we observed a 2.4-fold increase in peroxidation, however, no effect was observed in maize or beans.  相似文献   

19.
Significant root growth inhibition was observed during the very short 5 minute exposure time of barley roots to the low 10 μM concentration of cadmium. In addition to the cadmium-induced root growth inhibition, considerable radial expansion of roots was observed as a characteristic symptom of transient short-term exposure of roots to cadmium. The cadmium-induced radial expansion of roots was observed mainly the cortical cells of elongation zone that were twice as large as in control roots. Similarly as in cadmium-treated roots, short-term treatment with ACC significantly inhibited root growth and caused a marked radial expansion of cortical cells. The ethylene synthesis inhibitor cobalt significantly alleviated both the cadmium- and ethylene precursor-induced root growth inhibition and radial root expansion. The results indicate that ethylene probably plays a crucial role in the short-term cadmium-induced inhibition of root growth and radial cell expansion of barley root tips, which are the very early symptoms of cadmium toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号