首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Inspection of naturally or artificially infected Hevea roots showed that Forms lignosus can penetrate undamaged roots directly, but does so more readily through wounds or natural openings like lenticels, or through the bases of lateral roots and bark scales. Therefore, Pomes-infected trees should be identified by leaf symptoms rather than by uncovering and inspecting roots, as this generally leads to root injury, which facilitates fungal penetration. Initial fungal entry into host tissue appears to be by mechanical pressure alone, but deeper penetration is through the action of extracellular enzymes. The fungus remains intercellular in the cortex but is intracellular in the woody tissue. Ray cell walls are penetrated mechanically, but the xylem through pits. The time taken for various stages of infection to occur is assessed. The amount of damage done by the fungus to roots and the blocking of xylem vessels by tyloses suggest that yellowing, curling and buckling of leaves on infected trees are drought symptoms and not a reaction to fungal toxins. The host reacts to the invasion of the cortex by forming a cork cambium and to the invasion of the woody tissue by blocking individual cells with phenols and resins, which could be important when breeding disease resistant Hevea root stocks.  相似文献   

2.
An endophytic fungus, F-23, was isolated from the roots of Dendrobium officinale Kimura et Migo, an endangered Chinese medicinal plant. The sequence of the ITS region indicated that the isolate belongs to the genus Mycena. After 4 months of inoculation, the root systems of D. officinale that were inoculated with F-23 fungus were much larger than the control’s root systems. We also observed that the hyphae of F-23 penetrated the epidermal cells within the host’s roots and spread from cell to cell. A large number of pelotons existed in the root cortical cells of D. officinale inoculated with F-23 fungus. Intracellular hyphae crossing through the host walls were also observed using SEM (scanning electron microscopy). In contrast, light microscopy and SEM showed that the transverse sections of the roots of control plants remained uncolonized. Therefore, the F-23 fungus can form mycorrhizal associations with the roots of its host plant, D. officinale, and enhance the growth of seedlings and roots. In brief, Mycena sp. was identified and shown to be a mycorrhizal fungus of the epiphytic orchid, D. officinale. This might be of potential use to the mass cultivation of D. officinale under artificial conditions.  相似文献   

3.
The isolation and identification of rhubarb viruses occurring in Britain   总被引:1,自引:0,他引:1  
Virus-like symptoms were common in British crops of rhubarb. All plants tested of the three main varieties, ‘Timperley Early’, ‘Prince Albert’ and ‘Victoria’, were virus-infected. Turnip mosaic virus and a severe isolate of arabis mosaic virus (AMV) were obtained from ‘Timperley Early’; and ‘Prince Albert’ contained turnip mosaic virus, cherry leaf roll virus (CLRV), a mild isolate of AMV and, infrequently, cucumber mosaic virus (CMV). The main commercial variety ‘Victoria’ contained turnip mosaic virus, CLRV, a mild isolate of AMV and, infrequently, strawberry latent ringspot virus (SLRV). All the viruses were identified serologically. The rhubarb isolates did not differ markedly from other isolates of these viruses in herbaceous host reactions, properties in vitro or particle size and shape. A rhubarb isolate of CLRV was distinguished serologically from a cherry isolate of the virus. Turnip mosaic virus, CLRV and SLRV, were transmitted with difficulty, but AMV isolates were readily transmitted by mechanical inoculation. Turnip mosaic virus was also transmitted to rhubarb by Myzus persicae and Aphis fabae. CLRV was transmitted in 6–8% of the seed of infected ‘Prince Albert’ and ‘Victoria’ rhubarb and in 72% of the seed of infected Chenopodium amaranticolor. Mild isolates of AMV were also transmitted in 10–24% of the seed of infected ‘Prince Albert’ and ‘Victoria’ plants.  相似文献   

4.
Roots of two Chinese cabbage (Brassica campestris L. ssp. pekinensis) varieties, one tolerant and one susceptible, were inoculated with Plasmodiophora brassicae in liquid medium and in soil. Chitinase and peroxidase activities were determined in roots and shoots 1–21 days after inoculation with resting spores of Plasmodiophora and the enzyme activities compared with healthy tissue of the same age. In infected roots of the susceptible variety ‘Granat’ chitinase activity was higher than in the control 10 days after inoculation with spores. In the tolerant variety ‘Parkin’ we detected an increase in chitinase activity at the same time, which was about twice that of ‘Granat’. Chitinase activity in ‘Granat’ was also enhanced on day 13, 14 and 17 after inoculation, whereas chitinase activity in ‘Parkin’ was lower in the infected roots than in the controls during that period. In the shoots no correlation between chitinase activity and infection in the two varieties was observed. Chitinase from Chinese cabbage was further characterized and showed a pH optimum at pH 4.5–5.5 and a temperature optimum at 35–45°C. After isoelectric focusing 7 isoenzymes were discovered, but there were almost no differences between infected and healthy root extracts. Two isoenzymes with pI 8.7 and 8.8 showed cross-reactivity with an antiserum against bean chitinases. The molecular mass of these isoenzymes was determined as 33 kDa. Total peroxidase activity was generally higher in root tissue of both varieties than in the shoots. Peroxidase activity was increased most prominently in infected ‘Granat’ roots on day 13 after inoculation and of both varieties on day 17 compared to the controls. In clubbed tissue of ‘Granat’ a specific peroxidase isoenzyme appeared the first time 21 days after inoculation and was most prominent 28–30 days after inoculation. This isoenzyme had a molecular mass of ca 24 kDa and a pI of ca 8.8. With respect to our results the strategy of the Plasmodiophorales for plant attack is discussed.  相似文献   

5.
Interactions between watermelon and a green fluorescent protein (GFP)‐tagged isolate of Fusarium oxysporum f.sp. niveum race 1 (Fon‐1) were studied to determine the differences in infection and colonization of watermelon roots in cultivars resistant to and susceptible to Fusarium wilt. The roots of watermelon seedlings were inoculated with a conidial suspension of the GFP‐tagged isolate, and confocal laser scanning microscopy was used to visualize colonization, infection and disease development. The initial infection stages were similar in both the resistant and susceptible cultivars, but the resistant cultivar responded differentially after the pathogen had penetrated the root. The pathogen penetrated and colonized resistant watermelon roots, but further fungal advance appeared to be halted, and the fungus did not enter the taproot, suggesting that resistance is initiated postpenetration. However, the tertiary and secondary lateral roots of resistant watermelon also were colonized, although not as extensively as susceptible roots, and the hyphae had penetrated into the central cylinder of lateral roots forming a dense hyphal mat, which was followed by a subsequent collapse of the lateral roots. The initial infection zone for both the wilt‐susceptible and wilt‐resistant watermelon roots appeared to be the epidermal cells within the root hair zone, which the fungus penetrated directly after forming appressoria. Areas where secondary roots emerged and wounded root tissue also were penetrated preferentially.  相似文献   

6.
The infecting hyphae of Phytophthora capsici grew intercellularly in infected tissues of roots and stems of pepper (Capsicum annuum). The vascular tissues were not markedly disorganized even when heavily infected. Intercellularly growing hyphae penetrated the host cells by forming haustorium-like bodies. The consistent features of ultrastructural changes in infected tissues of pepper roots and stems were degeneration of cell organelles and dissolution of host cell walls. The cytoplasm detached from the cell wall aggregated abundantly around some haustorium-like bodies or the penetration sites of fungal hyphae. The host cell walls were palely stained, thinned and swollen, possibly being biochemically altered by the action of fungal macerating enzymes. Electron-dense, wall-like material was apposed on the outer wall of xylem vessel contacted by fungal hyphae. The infecting hyphae were also surrounded by granular, dark-staining cytoplasm. Characteristics of host cell responses to the invading P. capsici were the deposition of papilla-like material on host cell walls next to hyphae and the encasement of haustorium-like bodies with wall appositions.  相似文献   

7.
The distribution of extracellular 1,3‐β‐glucanase secreted by Gaeumannomyces graminis var. tritici (Ggt) was investigated in situ in inoculated wheat roots by immunogold labelling and transmission electron microscopy. Antiserum was prepared by subcutaneously injecting rabbits with purified 1,3‐β‐glucanase secreted by the pathogenic fungus. A specific antibody of 1,3‐β‐glucanase, anti‐GluGgt, was purified and characterized. Double immunodiffusion tests revealed that the antiserum was specific for 1,3‐β‐glucanase of Ggt, but not for 1,3‐β‐glucanase from wheat plants. Native polyacrylamide gel electrophoresis of the purified and crude enzyme extract and immunoblotting showed that the antibody was monospecific for 1,3‐β‐glucanase in fungal extracellular protein populations. After incubation of ultrathin sections of pathogen‐infected wheat roots with anti‐1,3‐β‐glucanase antibody and the secondary antibody, deposition of gold particles occurred over hyphal cells and the host tissue. Hyphal cell walls and septa as well as membranous structures showed regular labelling with gold particles, while few gold particles were detected over the cytoplasm and other organelles such as mitochondria and vacuoles. In host tissues, cell walls in contact with the hyphae usually exhibited a few gold particles, whereas host cytoplasm and cell walls distant from the hyphae were free of labelling. Furthermore, over lignitubers in the infected host cells labelling with gold particles was detected. No gold particles were found over sections of non‐inoculated wheat roots. The results indicate that 1,3‐β‐glucanase secreted by Ggt may be involved in pathogenesis of the take‐all fungus through degradation of callose in postinfectionally formed cell wall appositions, such as lignitubers.  相似文献   

8.
Patterns of infection withFusarium culmorum (W G Smith) Saccardo were observed in seedling roots of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), maize (Zea mays L.) and asparagus (Asparagus officinalis L). Apical regions of the main roots were not infected. Since penetration into the root occurred several days after inoculation and the roots were growing during the experiment, these regions had apparently not been in existence long enough to be infected. In older regions of barley, wheat and asparagus, hyphae entered through the tips of lateral roots. In barley and wheat, which had not developed any suberin lamellae in their subepidermal layer, infection occurred randomly over the remainder of the root. In maize, the fungus penetrated the epidermis at many sites but did not breach the exodermis in which all cells possessed both Casparian bands and suberin lamellae. Maize roots, therefore, sustained only minimal infections. In asparagus, the fungus grew through the short (passage) cells but never the long cells of the exodermis. In doing so, it penetrated cells possessing Casparian bands but lacking suberin lamellae. The results support the hypothesis that suberin lamellae provide effective barriers to the growth ofF. culmorum hyphae.  相似文献   

9.
Light and transmission electron microscopy revealed thatTyphula ishikariensis penetrated into bentgrass leaves either through cuticles or stomata either by single hyphae or infection cushions formed on host surfaces. Time course study on infected leaves showed that penetration through stomatal subsidiary cells and their adjacent cells seemed to occur earlier than that through epidermal cells located farther from stomata. More than 30% of epidermal cells were infected by 10 days after inoculation. When hyphae penetrated through an intact cuticle of epidermal cells, they seemed to dissolve host cell walls enzymatically at penetration sites. Physical pressure also seemed to be involved in penetration.  相似文献   

10.
Cell suspension cultures of three varieties of Capsicum annuum L., each with a different degree of sensitivity to the fungus Phytophthora capsici, responded to elicitation by both lyophilized mycelium and fungus filtrate with a hypersensitive reaction. They showed the synthesis or accumulation of PR-proteins with peroxidase (EC 1.11.1.7) activity and the accumulation of lignin-like polymer (as measured by derivatization with thioglycolic acid). The cultivation medium was optimised for both plant and fungus growth in order to avoid any stress during their combination. The resistant pepper variety, Smith-5, showed a more intense response to the elicitor preparations than the sensitive varieties, Americano and Yolo Wonder. This was particularly evident when the cell suspensions were elicited with the filtrate. After elicitation, the cell walls thickened through the accumulation of lignin, as can be observed by staining microscope preparations with methylene blue. Elicitation also reduced the level of total peroxidase activity in the susceptible varieties, while such activity increased in resistant varieties, and was accompanied by de novo expression of acidic peroxidase isoenzymes in the extracellular and cell wall fractions. Of note was the PR protein of pI 5.7 showing peroxidase activity, which was induced by both elicitor types in the elicited cell suspensions of the resistant variety alone, making it a marker of resistance. The increases in the activity of these peroxidases in the resistant variety are in concordance with the accumulation of lignin observed 24 h after inoculation by both elicitors from the fungus. The possible role of these isoenzymes in lignin biosynthesis, used to reinforce the cell walls against fungal penetration of the cells, is discussed. These results are in accordance with those previously observed in plant stem sections.  相似文献   

11.
Cocoyam (Xanthosoma sagittifolium) is an important tuber crop in most tropical zones of Africa and America. In Cameroon, its cultivation is hampered by a soil-borne fungus Pythium myriotylum which is responsible for root rot disease. The mechanism of root colonisation by the fungus has yet to be elucidated. In this study, using microscopical and immunocytochemical methods, we provide a new evidence regarding the mode of action of the fungus and we describe the reaction of the plant to the early stages of fungal invasion. We show that the fungal attack begins with the colonisation of the peripheral and epidermal cells of the root apex. These cells are rapidly lost upon infection, while cortical and stele cells are not. Labelling with the cationic gold, which binds to negatively charged wall polymers such as pectins, is absent in cortical cells and in the interfacial zone of the infected roots while it is abundant in the cell walls of stele cells. A similar pattern of labelling is also found when using the anti-pectin monoclonal antibody JIM5, but not with anti-xyloglucan antibodies. This suggests that early during infection, the fungus causes a significant loss of pectin probably via degradation by hydrolytic enzymes that diffuse and act away from the site of attack. Additional support for pectin loss is the demonstration, via sugar analysis, that a significant decrease in galacturonic acid content occurred in infected root cell walls. In addition, we demonstrate that one of the early reactions of X. sagittifolium to the fungal invasion is the formation of wall appositions that are rich in callose and cellulose.  相似文献   

12.
In Normandy, flax is a plant of important economic interest because of its fibres. Fusarium oxysporum, a telluric fungus, is responsible for the major losses in crop yield and fibre quality. Several methods are currently used to limit the use of phytochemicals on crops. One of them is the use of plant growth promoting rhizobacteria (PGPR) occurring naturally in the rhizosphere. PGPR are known to act as local antagonists to soil‐borne pathogens and to enhance plant resistance by eliciting the induced systemic resistance (ISR). In this study, we first investigated the cell wall modifications occurring in roots and stems after inoculation with the fungus in two flax varieties. First, we showed that both varieties displayed different cell wall organization and that rapid modifications occurred in roots and stems after inoculation. Then, we demonstrated the efficiency of a Bacillus subtilis strain to limit Fusarium wilt on both varieties with a better efficiency for one of them. Finally, thermo‐gravimetry was used to highlight that B. subtilis induced modifications of the stem properties, supporting a reinforcement of the cell walls. Our findings suggest that the efficiency and the mode of action of the PGPR B. subtilis is likely to be flax variety dependent.  相似文献   

13.
The response of seedling roots of near-isogenic tomato varieties to infection by Verticillium albo-atrum or Fusarium oxysporum f. sp. lycopersici was investigated. Studies of the infection of seedling roots not artificially damaged indicated that there was an extra-vascular expression of resistance towards V. albo-atrum but not to F. oxysporum. Roots of resistant tomato seedlings infected by V. albo-atrum contained the fungus in the epidermis and outer cortex while susceptible roots became heavily colonised. Observations made by transmission electron microscopy showed that the fungus appeared to be abnormal in growth and appearance in the epidermal and cortical cells of resistant seedling roots but normal in susceptible roots. Two preformed antifungal terpenoids were detected in seedling roots in greater amounts in resistant that in susceptible varieties. The possible mechanisms of seedling root resistance to vascular wilts are discussed.  相似文献   

14.
15.
Chinese cabbage roots colonized by the dematiaceous fungal taxon Heteroconium chaetospira were previously found to become highly resistant to clubroot and Verticillium yellows. The dematiaceous fungus possesses an endophytic nature, but no detailed anatomical studies on endophyte–host plant interactions have so far been provided. Light and electron microscopy revealed that hyphae of H. chaetospira were abundant on and inside the root epidermal cells by 3 weeks following inoculation. The penetration pegs easily breached into epidermal cells, and the infection hyphae penetrated into cortical cells. Some appressorium-like swollen structures formed from intracellular hyphae, but no visible degradation of the host cell walls was evident where the hyphae contacted. No visible signs of host reactions and no invagination of the host plasma membrane around the hyphae were seen in the host cells. By 8 weeks following inoculation, masses of closely packed fungal cells had been formed in some cells of the epidermis and cortical layers, but further hyphal ingress was halted, mostly in the inner cortical cell layer. Thus, root vascular cylinders remained intact.  相似文献   

16.
In thin sections of wheat rachis and stem, embedded in Spurr's resin, prefixed with glutaraldehyde and postfixed with osmium, large amounts of barley thionins were localized in cell walls with anti-thionin-protein A/gold. Reduced binding to thionin was detected in cell walls penetrated by Fusarium culmorum, suggesting that cell wall thionins were degraded by the fungus.  相似文献   

17.
The infection of lentil roots by Fusarium oxysporum Schlecht and the responses of the host cells to invading hyphae were examined by light microscopy. Hyphae from inoculum placed on the zone of cell elongation entered the roots at the juncture of epidermal cells within 8 h after inoculation. Although swollen hyphal apices were observed on the epidermal cells, root penetration occurred without formation of these structures or appressoria. The sheath of material found on the surface of uninoculated roots was absent from inoculated roots penetrated by hyphae. Prior to penetration, the epidermal cells became irregular in shape and their cytoplasm appeared to be plasmolysed or granular. Hyphae were observed in the cortex 10—12 h after inoculation and non–penetrated cortical cells were distinctly lobate. Often these lobed cells had a broad, peripheral band of diffuse cytoplasm. When hyphae were first observed in the cortical cells, the walls were ruptured and only slightly stained or unstained by toluidine blue. The inability of such walls to bind the stain may have been the result of the removal of wall components by fungal enzymes. Although extensive proliferation of hyphae was evident throughout the cortex after 24 h of incubation, the endodermis and vascular cylinder were free of hyphae for at least 72 h. Hyphae from inoculum placed on the root hairs or the root apex failed to penetrate the roots during the first 24 h of incubation. The cytological results herein are discussed in relation to the infection of field plantings by this pathogen.  相似文献   

18.
Isolates of Verticillium dahliae Kleb. from wilted cacao (Theobroma cacao L.), cotton (Gossypium hirsutum L.), and okra (Abelmoschus esculentus Medik.) penetrated all regions of living cacao tap and lateral roots and progressed intracellularly from the epidermis to the xylem in 4–6 days. The hypocotyl and tissues of the unerupted lateral roots beneath the epidermis resisted invasion. Host reactions included browning of extensively colonized cells, alteration (with apparent granulation) of the cytoplasm, and accumulation of materials in the lumina of endodermal cells. Resistance in the hypocotyl was associated with occasional thickening of inner tangential walls of colonized epidermal cells. The fungus formed conidia, microsclerotia, and narrow and wide hyphae within root tissues. The narrow hyphae predominated at the front of mycelial invasion of tissues while the broad hyphae developed behind this front. Limited studies under non-sterile conditions indicated that the apparent host-parasite interactions were similar to those observed with sterile roots and cultures of V. dahliae.  相似文献   

19.
Balestrini R  Cosgrove DJ  Bonfante P 《Planta》2005,220(6):889-899
-Expansins are extracellular proteins that increase plant cell-wall extensibility. We analysed their pattern of expression in cucumber roots in the presence and in the absence of the mycorrhizal fungus, Glomus versiforme. The distribution of -expansins was investigated by use of two polyclonal antibodies (anti-EXPA1 and anti-EXPA2, prepared against two different cucumber -expansins) in immunoblotting, immunofluorescence, and immunogold experiments. Immunoblot results indicate the presence of a 30-kDa band specific for mycorrhizal roots. The two antibodies identify antigens with a different distribution in mycorrhizal roots: anti-EXPA1 labels the interface zone, but the plant cell walls only weakly. By contrast, the anti-EXPA2 labels only the plant cell walls. In order to understand the potential role of -expansins during the accommodation of the fungus inside root cells, we prepared semi-thin sections to measure the size of cortical cells and the thickness of cortical cell walls in mycorrhizal and non-mycorrhizal root. Mycorrhizal cortical cells were significantly larger than non-mycorrhizal cells and had thicker cell walls. In double-labelling experiments with cellobiohydrolase–gold complex, we observed that cellulose was co-localized with -expansins. Taken together, the results demonstrate that -expansins are more abundant in the cucumber cell walls upon mycorrhizal infection; we propose that these wall-loosening proteins are directly involved in the accommodation of the fungus by infected cortical cells.  相似文献   

20.
The red rot disease of Porphyra yezoensis Ueda (Rhodophyta) is caused by a parasitic fungus, Pythium sp. To facilitate the detection of this pathogen in infected thalli of P. yezoensis, polyclonal and monoclonal antibodies were prepared. Antibodies were raised against antigen prepared from an isolate of fungal hyphae obtained from red-rot infected thallus of P. yezoensis from Aichi Prefecture. Polyclonal antibody was obtained from the antisera of immunized rabbits. Monoclonal antibody was obtained from the culture supernatant of a hybridoma which had been established by cell fusion between a myeloma cell line and spleen cells of immunized mice. Hyphae were detected by means of indirect fluorescent antibody technique. Titers of polyclonal antibodies obtained were too low to recognize fungal hyphae that had penetrated the thalli of P. yezoensis; however, monoclonal antibody was useful for the detection of fungi that had penetrated algal thalli. The monoclonal antibody was specific for the Pythium sp. from red-rot infected thalli of P. yezoensis from Saga (western Japan) and from Aichi Prefectures (central Japan), but was ineffective for infections from Miyagi Prefecture (northern Japan). It is evident, therefore, that Pythium sp. can give rise to immunologically distinct groups of red rot disease. Based on chemical and enzymatic treatments, the antigenic determinant appeared to localize on the sugar chains of glycoconjugates or the polysaccharides of the hyphal cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号