首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse measure of validation. Our indices classified species identified as being in need of conservation by the state of Missouri as highly vulnerable. The distribution of vulnerable species in Missouri showed consistent patterns between indices, with the more forest-dominated, groundwater fed streams in the Ozark subregion generally having higher numbers and proportions of vulnerable species per site than subregions that were agriculturally dominated with more overland flow. These results suggest that both indices will identify similar habitats as conservation action targets despite discrepancies in the classification of vulnerable species. Our vulnerability assessment provides a framework that can be refined and used in other regions.  相似文献   

2.
Indices that rate the vulnerability of species to climate change in a given area are increasingly used to inform conservation and climate change adaptation strategies. These species vulnerability indices (SVI) are not commonly associated with landscape features that may affect local-scale vulnerability. To do so would increase their utility by allowing managers to examine how the distributions of vulnerable species coincide with environmental features such as topography and land use, and to detect landscape-scale patterns of vulnerability across species. In this study we evaluated 15 animal species that had been scored with the USDA-Forest Service Rocky Mountain Research Station’s system for assessing vulnerability of species to climate change. We applied the vulnerability scores to each species’ respective habitat models in order to visualize the spatial patterns of cross-species vulnerability across the biologically diverse Coronado national forest, and to identify the considerations of spatially referencing such indices. Across the study extent, cross-species vulnerability was higher in higher-elevation woodlands and lower in desert scrub. The results of spatially referencing SVI scores may vary according to the species examined, the area of interest, the selection of habitat models, and the method by which cross-species vulnerability indices are created. We show that it is simple and constructive to bring species vulnerability indices into geographic space: landscape-scale patterns of vulnerability can be detected, and relevant ecological and socioeconomic contexts can be taken into account, allowing for more robust conservation and management strategies.  相似文献   

3.
Wood density is an important plant trait that influences a range of ecological processes, including resistance to damage and growth rates. Wood density is highly dependent on anatomical characteristics associated with the conductive tissue of trees (xylem and phloem) and the fibre matrix in which they occur. Here, we investigated variation in the wood density of the widespread mangrove species Avicennia marina in the Exmouth Gulf in Western Australia and in the Firth of Thames in New Zealand. We assessed how variation in xylem vessel size, fibre wall thickness and proportion of phloem within the wood contributed to variation in wood density and how these characteristics were linked to growth rates. We found the wood density of A. marina to be higher in Western Australia than in New Zealand and to be higher in taller seaward fringing trees than in scrub trees growing high in the intertidal. At the cellular level, high wood density was associated with large xylem vessels and thick fibre walls. Additionally, wood density increased with decreasing proportions of phloem per growth layer of wood. Tree growth rates were positively correlated with xylem vessel size and wood density. We conclude that A. marina can have large xylem vessel sizes and high growth rates while still maintaining high wood density because of the abundance and thickness of fibres in which vessels are found.  相似文献   

4.
淮北相山三种群落中优势树种次生木质部的解剖学特征   总被引:1,自引:0,他引:1  
对淮北相山侧柏、构树混交林6个优势树种次生木质部的观察表明,其结构表现出一定的旱生特征:高的复孔率和导管分布频率,窄导管,木纤维短,射线低。利用相对输导率和脆性指数对导管水分输导的有效性和安全性进行了评估,结果表明6个优势树种的相对输导率依次为:牡荆〉酸枣〉扁担木〉构树〉柘树〉小叶鼠李,脆性指数依次为:构树〉牡荆〉扁担木〉酸枣〉小叶鼠李〉柘树,植物水分输导的有效性和安全性与其在相山的自然分布相一致。作为广布优势树种,牡荆、酸枣和扁担木的次生木质部在导管分子长度、单孔率、导管频率、相对输导率、脆性指数、多列射线高度、多列射线宽度和单列射线高度等性状上均表现出一定的可塑性。与混交林和人工侧柏林相比,灌丛中植物导管分子短,单孔率低,导管频率大,射线低,相对输导率大,脆性指数小,更倾向于旱生特点。逐步多重回归分析表明,随着郁闭度的增加,导管分子长度和单孔率增加。随着风速的增加,导管频率增加。随着土壤含水量的增加,多列射线变宽。  相似文献   

5.
Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species.  相似文献   

6.
We investigated the influence of body size on rarity patterns at a regional scale using the tenebrionid beetles of Latium (Central Italy). For this we calculated geographical range size (no. of 10 km square cells), habitat breadth (no. of phytoclimatic units), and abundance (no. of sampled individuals) using a large database containing 3,561 georeferenced records for 84 native species. For each species, we used total body length to correct rarity measures for body size. Then we calculated vulnerability (Kattan) indices using both corrected and uncorrected rarity scores. Finally we used species range trends (expanded vs. contracted) as a measure of actual species decline. We found that range trends were correlated with vulnerability index independently from body size correction, the species with the highest vulnerability being those that experienced the strongest range contraction for both corrected and uncorrected measures. Also, we found that correcting for body size may be problematic because of the weak correlations between body size and geographical and ecological rarity (notably, abundance was not correlated). These findings indicate that correcting rarity for body size is not only theoretically questionable, but also practically difficult and possibly useless for conservation purposes.  相似文献   

7.
The results of anatomic observations on secondary xylem of 6 dominant species in a Platycladus orientalis + Broussonetia papyrifera mixed forest in Xiangshan mountain, Huaibei, China, indicated that these species share some xeromorphic features in secondary xylem such as high vessel frequency, less percentage of single porous, thinner vessel, shorter fibers, and lower rays. The availability and safety of the vessel associated with water conduction was evaluated through relative conductivity and the vulnerability index, the result shown that relative conductivity of the 6 dominant species is ordered as Vitex negundo var. cannabifolia, Ziziphus jujuba var. spinosa, Grewia biloba var. parviflora, Broussonetia papyrifera, Cudrania tricuspuidata, Rhamnus parvifolia , while the vulnerability index is ordered as B. papyrifera, V. negundo var. cannabifolia, G. biloba var. parviflora, Z. jujuba var. spinosa, C. tricuspuidata, R. parvifolia, and the availability and safety of water conduction of these plants is coincided with their distribution in Xiangshan mountain. The three widely distributed dominant species, Z. jujuba var. spinosa, V. negundo var. cannabifolia and G. biloba var. parviflora, show great plasticity in some characters, including vessel element length, vessel frequency, relative conductivity, vulnerability index, percentage of single porous, multiserate ray height, multiserate ray width, and single ray height, etc. Compared to those in mixed forest and P. orientalis forest, the species in shrub tend to have shorter vessel elements, higher vessel frequency, less single porous percentage, lower rays, higher relative conductivity, and less vulnerabilityindex, thus indicated that they are inclined to more xeromorphic anatomically. The result from the stepwise multiple regressions show that both of the vessel element length and percentage of single porous increased with the canopy density, and the vessel frequency increased with the wind velocity, multiserate ray width increased with the soil water content.  相似文献   

8.
Stems of four species of the Australian family Tremandraceae furnished sufficient material for analysis of wood anatomy. Presence of simple perforation plates on vessel elements, occurrence of libriform fibers (some septate), tendency toward vasicentric parenchyma, presence of crystalliferous axial parenchyma strands, presence of crystals singly in ray cells, and occurrence of amorphous deposits in parenchyma are all features in which Tremandraceae resemble Pittosporaceae. Wood anatomy tends to support a “rosoid” rather than a sapindalean, rutalean, or polygalalean affinity for Tremandraceae, although wood is only a preliminary indicator. By the use of numerical indices as well as such indicators as helical thickening and presence of vascular tracheids, wood of Tremandraceae is shown to be highly xeromorphic. The genus Tremandra may represent a secondary entrant into wet forests of southwestern Australia; it clearly is not relict from mesic ancestry.  相似文献   

9.
Climate change may shrink and/or shift plant species ranges thereby increasing their vulnerability and requiring targeted conservation to facilitate adaptation. We quantified the vulnerability to climate change of plant species based on exposure, sensitivity and adaptive capacity and assessed the effects of including these components in complementarity‐based spatial conservation prioritisation. We modelled the vulnerability of 584 native plant species under three climate change scenarios in an 11.9 million hectare fragmented agricultural region in southern Australia. We represented exposure as species' geographical range under each climate change scenario as quantified using species distribution models. We calculated sensitivity as a function of the impact of climate change on species' geographical ranges. Using a dispersal kernel, we quantified adaptive capacity as species' ability to migrate to new geographical ranges under each climate change scenario. Using Zonation, we assessed the impact of individual components of vulnerability (exposure, sensitivity and adaptive capacity) on spatial conservation priorities and levels of species representation in priority areas under each climate change scenario. The full vulnerability framework proved an effective basis for identifying spatial conservation priorities under climate change. Including different dimensions of vulnerability had significant implications for spatial conservation priorities. Incorporating adaptive capacity increased the level of representation of most species. However, prioritising sensitive species reduced the representation of other species. We conclude that whilst taking an integrated approach to mitigating species vulnerability to climate change can ensure sensitive species are well‐represented in a conservation network, this can come at the cost of reduced representation of other species. Conservation planning decisions aimed at reducing species vulnerability to climate change need to be made in full cognisance of the sensitivity of spatial conservation priorities to individual components of vulnerability, and the trade‐offs associated with focussing on sensitive species.  相似文献   

10.
Wood of nine species of Krameria (including all clades proposed within the genus) reveals a few characters related to infrageneric systematics; most relate primarily to ecology and habit. Wood of Krameria closely fits quantitative data reported for desert shrubs. Lack of vessel grouping correlates with the presence of densely pitted tracheids. Wood xeromorphy in Krameria may relate in part to hemiparasitism. Tracheid presence may also account for relatively low vessel density. Wood anatomy of six species of Zygophyllaceae (including both genera of Morkillioideae) is compared with that of Krameriaceae because recent phylogenies propose that these two families comprise the order Zygophyllales. Several wood characters appear to represent synapomorphies reflecting this relationship. Differences in wood anatomy between Krameriaceae and Zygophyllaceae are believed to represent autapomorphies. Notable among these include Paedomorphic Type II rays (Krameriaceae), storying (Zygophyllaceae), presence of vestured pits (Zygophyllaceae), and differentiation into vasicentric tracheids and fibre-tracheids (Zygophyllaceae). The latter feature is referable to the concept of fibre-tracheid dimorphism. Recognition of Krameriaceae as separate from Zygophyllaceae is supported by wood characters. Wood of Zygophyllales does not conflict with the idea that the order belongs to rosids, with Malpighiaceae as the outgroup of Zygophyllales.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 149 , 257–270.  相似文献   

11.
Dicotyledonous woods from the Upper Cretaceous of Southern IllinoiS. Five species of fossil dicotyledonous wood are described from an Upper Cretaceous (Maestrichtian; locality in Alexander County, IllinoiS. U.S. A. Paraquercimum cretaceum has structure similar to the Fagaceae (evergreen Oak- Lithocarpus ) and Casuarinaceae and represents the earliest known occurrence of this structural type (large solitary pores and uniseriate and large multiseriale rays). Paraphyltanthoxyhin illirioisense and Icacinoxylon alternipunctata are species of genera represented at other Cretaceous and Early Tertiary localities In large diameter trees. Parabombacaceoxylon magniporosum has large diameter pores and scalariform perforation plates, a combination of characters that is extremely rare in the extant flora. Paraapocynaceoxylon barghoorni has a combination of characters represented in extant Apocynaceae. These five species lack growth rings, have high vulnerability indices (mean vessel diameter divided by mean number of vessels per square millimeter, and a relatively high proportion of ray parenchyma. They lack specialized wood anatomical characters, and a compilation of vessel element lengths in these and other Cretaceous woods indicates that short vessel elements (a derived character) were less frequent in the Cretaceous than in extant dicotyledonous trees.  相似文献   

12.
Ecological disturbances are recognized as a crucial factor influencing the attributes of ecological communities. Depending on the specific adaptation or life cycle, plant species show different responses to disturbances of different magnitudes. Herben et al. (Journal of Vegetation Science, 27, 628–636) proposed six disturbance indicator values (DIVs) that describe the niches of Central‐European plant species along gradients of disturbance frequency and severity. Here, we ask if the DIVs can be used in community ecology for bioindication of disturbance regime?We used a dataset of riparian forests sampled within mountain catchments (the Sudetes, SW Poland). As the regime of disturbance is driven by changes in floods from the spring toward the mouth, we calculated the position of every plot along longitudinal (upstream–downstream) gradient and used it as a proxy for the disturbance severity and frequency. We then calculated the community‐weighted means (CWMs) for each of the six indices for each plot and analyzed whether these indices reflected the position of the plots along the rivers. We expected an increase in the severity indices and a decrease in the frequency indices downstream along the rivers. Moreover, we analyzed relationships between disturbance indices and species optima along longitudinal gradient.Surprisingly, means for all analyzed indices increased along the rivers. Severity indices showed the strongest association with the longitudinal gradient. The disturbance severity index for herbs was the only index that differed significantly among species with different responses along longitudinal gradient. On these results, we identified a strong correlation between the severity and frequency indices as the main problem.We conclude that the DIVs have considerable applicative potential; however, the determination of ecological niches separately for disturbance severity and frequency is difficult because different components interact to shape the realized niche of each species. All analyzed indices encompass different attributes of the disturbance regime including both severity and frequency.  相似文献   

13.
Wood structure and function of juvenile wood from 18 conifer species from four conifer families (Araucariaceae, Cupressaceae, Pinaceae and Podocarpaceae) were examined for a trade-off between wood reinforcement and hydraulic efficiency. Wood density and tracheid 'thickness-to-span' ratio were used as anatomical proxies for mechanical properties. The thickness:span represented the ratio of tracheid double wall thickness to lumen diameter. Hydraulic resistivity (R) of tracheids on a cross-sectional area basis (RCA) increased over 50-fold with increasing density and thickness:span, implying a strength versus efficiency conflict. The conflict arose because density and thickness:span were increased by narrowing tracheid diameter rather than by thickening walls, which may be developmentally difficult. In the Pinaceae and Cupressaceae species, density and thickness:span correlated strongly with protection from drought-induced embolism, suggesting that mechanical strength was required in part to withstand tracheid collapse by negative sap pressure. These species showed a corresponding trade-off between increasing RCA and embolism protection. In contrast, species of Podocarpaceae and Araucariaceae were overbuilt for their embolism protection and were hydraulically inefficient, having greater density, thickness:span and RCA, none of which were correlated with vulnerability to embolism.  相似文献   

14.
In the absence of detailed assessments of extinction risk, ecological specialisation is often used as a proxy of vulnerability to environmental disturbances and extinction risk. Numerous indices can be used to estimate specialisation; however, the utility of these different indices to predict vulnerability to future environmental change is unknown. Here we compare the performance of specialisation indices using coral‐feeding butterflyfishes as a model group. Our aims were to 1) quantify the dietary preferences of three butterflyfish species across habitats with differing levels of resource availability; 2) investigate how estimates of dietary specialisation vary with the use of different specialisation indices; 3) determine which specialisation indices best inform predictions of vulnerability to environmental change; and 4) assess the utility of resource selection functions to inform predictions of vulnerability to environmental change. The relative level of dietary specialisation estimated for all three species varied when different specialisation indices were used, indicating that the choice of index can have a considerable impact upon estimates of specialisation. Specialisation indices that do not consider resource abundance may fail to distinguish species that primarily use common resources from species that actively target resources disproportionately more than they are available. Resource selection functions provided the greatest insights into the potential response of species to changes in resource availability. Examination of resource selection functions, in addition to specialisation indices, indicated that Chaetodon trifascialis was the most specialised feeder, with highly conserved dietary preferences across all sites, suggesting that this species is highly vulnerable to the impacts of climate‐induced coral loss on reefs. Our results indicate that vulnerability assessments based on some specialisation indices may be misleading and the best estimates of dietary specialisation will be provided by indices which incorporate resource availability measures, as well as assessing responses of species to changes in resource availability.  相似文献   

15.
Topographic complexity is a key component of habitat, which has been linked to increased species richness in many ecological communities. It can be measured in various ways and it is unclear whether these different measurements are mutually comparable when they relate to plant species richness at different spatial scales. Using a densely sampled set of observations for Rhododendrons (406 species and 13,126 georeferenced records) as a test case, we calculated eight topographic complexity indices from a 250-m resolution digital elevation model and examined their correlations with Rhododendron species richness in China at seven spatial scales: grain sizes 0.05°, 0.1°, 0.25°, 0.5°, 1.0°, 1.5°, and 2.0°. Our results showed that the eight topographic complexity indices were moderately to highly correlated with each other, and the relations between each pair of indices decreased with increasing grain size. However, with an increase in grain size, there was a higher correlation between topographic complexity indices and Rhododendron species richness. At finer scales (i.e. grain size  1°), the standard deviation of elevation and range of elevation had significantly stronger correlations with Rhododendron species richness than other topographic complexity indices. Our findings indicate that different topographic complexity indices may have positive correlations with plant species richness. Moreover, the topographic complexity–species richness associations could be scale-dependent. In our case, the correlations between topographic complexity and Rhododendron species richness tended to be stronger at coarse-grained macro-habitat scales. We therefore suggest that topographic complexity index may serve as good proxy for studying the pattern of plant species richness at continental to global levels. However, choosing among topographic complexity indices must be undertaken with caution because these indices respond differently to grain sizes.  相似文献   

16.
Riparian ecotones in the fynbos biome of South Africa are heavily invaded by woody invasive alien species, which are known to reduce water supply to downstream environments. To explore whether variation in species-specific functional traits pertaining to drought-tolerance exist, we investigated wood anatomical traits of key native riparian species and the invasive Acacia mearnsii across different water availability proxies. Wood density, vessel resistance against implosion, vessel lumen diameter and vessel wall thickness were measured. Wood density varied significantly between species, with A. mearnsii having denser wood at sites in rivers with high discharge. As higher wood density is indicative of increased drought tolerance and typical of drier sites, this counter-intuitive finding suggests that increased wood density was more closely related to midday water stress, than streamflow quantity per se. Wood density was positively correlated with vessel resistance against implosion. Higher wood density may also be evidence that A. mearnsii is more resistant against drought-induced cavitation than the studied native species. The observed plastic response of A. mearnsii anatomical traits to variable water availability indicates the ability of this species to persist under various environmental conditions. A possible non-causal relationship between wood anatomy and drought tolerance in these riparian systems is discussed.  相似文献   

17.
Aim The dimensions of species vulnerability to climate change are complex, and this impedes efforts to provide clear advice for conservation planning. In this study, we used a formal framework to assess species vulnerability to climate change quantifying exposure, sensitivity and adaptive capacity and then used this information to target areas for reducing vulnerability at a regional scale. Location The 6500‐km2 Mount Lofty Ranges region in South Australia. Methods We quantified the vulnerability of 171 plant species in a fragmented yet biologically important agro‐ecological landscape, typical of many temperate zones globally. We specified exposure, using three climate change scenarios; sensitivity, as the adverse impact of climate change on species’ spatial distribution; and adaptive capacity, as the ability of species to migrate calculated using dispersal kernels. Priority areas for reducing vulnerability were then identified by incorporating these various components into a single priority index. Results Climate change had a variable impact on species distributions. Those species whose range decreased or shifted geographically were attributed higher sensitivity than those species that increased geographic range or remained unchanged. The ability to adapt to range changes in response to shifting climates varies both spatially and between species. Areas of highest priority for reducing vulnerability were found at higher altitudes and lower latitudes with increasing severity of climate change. Main conclusions Our study demonstrates the use of a single spatially explicit index that identifies areas in the landscape for targeting specific conservation and restoration actions to reduce species vulnerability to climate change. Our index can be transferred to other regions around the world in which climate change poses an increasing threat to native species.  相似文献   

18.
19.
Statistically rigorous methods for summarizing and reporting trends in the intactness of biodiversity are a key element of effective biodiversity monitoring programs. There are four major approaches for translating complex monitoring data into easily communicated summary statistics: (1) traditional diversity indices such as species richness and Simpson's diversity, (2) species intactness indices based on occurrence, (3) species intactness indices based on abundance, and (4) multivariate community indices. We use simulated data to evaluate the effectiveness of 13 indices from these four categories based on statistical robustness, sensitivity to errors and noise in the data, ecological relevance, and ease of communication. We show that indices that calculate species intactness using equations like Buckland's arithmetic mean index are the most effective for use in large-scale biodiversity intactness monitoring programs. Traditional diversity indices are unsuitable for monitoring of biodiversity intactness, and multivariate indices can be highly sensitive to errors and noise in the data. Finally, we provide guidelines for the application of these indices in biodiversity intactness monitoring.  相似文献   

20.
We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for biogeographical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号