首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An attempt was carried out to produce trisomics of the wild tomato L. peruvianum, to define their essential features, and to detect relationships between trisomy and the expression of self-compatibility.Triploid-diploid crosses in L. peruvianum yielded nearly 40% aneuploids. Of these, 18% were single trisomics, and the rest had 2, 3 and 4 extra chromosomes. Almost all the trisomics occurred in crosses where the triploid was used as female parent. Vigour and fertility of trisomics were not much different from those of disomics, and morphologically they were very similar.The extra chromosome was identified in three self-compatible trisomic plants through somatic and pachytene chromosome morphology. One of these plants was trisomic for chromosome 1, while the other two were trisomic for chromosome 3. In these trisomics a positive correlation was found between chromosome length and trivalent formation, but no relationship between chromosome length and frequency of laggards was observed.A series of test-crosses revealed that the capacity of the trisomics to produce seed upon selfing always resulted from alterations of the incompatibility phenotype of the style and not from competitive interaction in the pollen. Progeny analyses showed that the self-compatibility features of the trisomics were not transmitted from one generation to the next. The implications of these findings are discussed.This work has been supported by a contract between the European Communities and the CNEN. This publication is contribution no. 1458 from the Biology Division of the European Communities and contribution no. 472 from the Divisione Applicazioni delle Radiazioni del CNEN.  相似文献   

2.
The influence of Robertsonian (Rb) heterozygosity on fertility has been the subject of much study in the house mouse. However, these studies have been largely directed at single simple heterozygotes (heterozygous for a single Rb metacentric) or complex heterozygotes (heterozygous for several to many metacentrics which share common chromosome arms). In this paper we describe studies on male multiple simple heterozygotes, specifically the F(1) products of crosses between wild-stock mice homozygous for four or seven metacentrics and wild-stock mice with a standard all-acrocentric karyotype; these F(1) products were characterized by four and seven trivalents at meiosis I, respectively. Mice with the same karyotype, but two different genetic backgrounds were examined. Although a range of meiotic and fertility studies were conducted, particular emphasis was paid to analysis of chromosome pairing, previously not well-described in multiple simple heterozygous mice. The progression of spermatocytes through prophase I was followed by electron microscopy of surface spread material. As previously shown for single simple Rb heterozygotes, the trivalents that characterize multiple simple heterozygotes initially showed delayed pairing of the centromeric region and later showed side arm formation, resulting from non-homologous pairing by the centromeric ends of the acrocentric chromosomes. In the four trivalent groups of mice, 15 and 32% of trivalents showed unpairing in the centromeric region at mid pachytene; equivalent values were 29 and 39% for the seven trivalent groups. Pairing abnormalities (largely attachments and interlocks between trivalents and between a trivalent and the XY configuration) were observed in 18 and 23% of mid pachytene cells in the four trivalent groups and 36 and 49% of cells in the seven trivalent groups. The greater level of pachytene irregularity (unpairing and pairing abnormalities) in seven versus four trivalent heterozygotes was mirrored in terms of higher anaphase I nondisjunction frequency and lower germ cell counts. However, while pachytene irregularities appear to contribute to germ cell death, examples of male sterility in our material undoubtedly also involve genic incompatibilities.  相似文献   

3.
Metaphase-I chromosome association in PMCs of five F1 hybrids 6x-triticale x T. turgidum (2n=5x=35 and genomes AABBR), and 13 plants from their backross or self offspring is reported. In wheat 18 chromosome arms and in rye 14 arms were recognized after C-banding and individually studied. Plants of backcross and F2 showed variability for number and type of rye chromosomes, having in common the 28 durum wheat chromosomes (AABB). By testing meiotic association in plants with different rye chromosome constitutions, significant negative correlations were found. A clear negative effect of rye heterochromatin on pairing in wheat chromosomes is observed, the influence being more pronounced for large arms than for the short ones.  相似文献   

4.
Cytogenetical studies of the F1 hybrid between the commercially cultivated tuber crop, cassava (Manihot esculenta Crantz.) and the closely related wild speciesManihot glaziovii Muell. (Ceara rubber) used as donor specles for Cassava mosaic discase and drought-resistant genes and back crosses (to cassava parent) were made. The contrasting parental characters showed partial to total dominance in the F1 hybrid, while the back cross plants were similar to cassava in most of their characters. Eleven of the twelve backeross plants exhibited resistance to Cassava mosaic under field conditions. Karyological similarities and differences as resolved on the basis of a comparative study of the karyotypes of the cassava parent and coara rubber were corroborated by the study of chromosomal pairing in the F1 at pachytene. Major chromosomal differentiation in the two species involved three chromosomes of their haploid complement which were represented by three heteromorphic bivalent associations in F1 each consisting of a probably basic chromosomal type and a derived type. Pachytene analyses of three back cross plants provided direct proof for random transmission of marker chromosomes of both the parents through male gametes of the F1 hybrid. An increase in the chiasma frequency in the back cross plants over the F1 hybrid at metaphase I stage was also observed. Pollen fertility of the backeross plants showed considerable variation.  相似文献   

5.
A plant with 2n = 14 + 1 ring chromosomes was obtained in the progeny of a primary trisomie for chromosome 7 of a two-rowed cultivar, Shin Ebisu 16. The morphological characteristics of the trisomic plants with an extra ring chromosome were similar to the primary trisomic for chromosome 7 (Semierect), which suggests that it originated from this chromosome. The ring chromosomes were not completely stable in mitotic cells because of abnormal behavior. Chromosome complements varied in different plants and in different roots within a plant. Root tip cells and spikes with 2n = 14 and 14 + 2 ring chromosomes were observed on plants with 14 + 1 ring chromosomes. Breakage-fusion-bridge cycle was inferred. The ring chromosome was associated with two normal homologues forming a trivalent in 17.6% sporocytes at metaphase I. The transmission of the extra ring chromosome was 23.1% in the progeny of the plant with 14 + 1 ring chromosomes. Trivalent formation may have been much higher at early prophase stages which were difficult to analyze in barley; only 4 of 120 sporocytes analyzed showed an isolated ring at pachytene. The ring chromosome moved to one pole without separation in 24.7% of the sporocytes at AI, and divided in 27.1% sporocytes giving rise to 8-8 separation. Only 10% of the sporocytes showed bridge formation at AI.  相似文献   

6.
Summary The substitution patterns of rye chromosomes in hexaploid triticale × wheat F2 hybrids, along with the transmission patterns of rye chromosomes through egg cells and pollen when several of the F1 hybrids were test crossed to triticale and wheat were investigated. The data indicated that the rye chromosome transmission through both the egg and pollen was random in number and in composition. The test crosses suggested that it was best to use wheat pollen for the transmission of rye chromosomes through the egg cells of the F1 hybrids and triticale egg cells for the transmission of rye chromosomes through F1 hybrid pollen. A deviation from random segregation in the F2 and the transmission rate was observed for rye chromosomes 1R, 4R/7R, and 6R. The transmission rates of 1R and 6R varied depending on the direction in which the cross was made. The results also indicated that there was little or no compensation between the R- and D-genomes and that the chromosomes of these two genomes appeared to be transmitted independently of each other.  相似文献   

7.
Hybrid rye breeding and seed production is based on the cytoplasmic male sterility (CMS)-inducing Pampa (P)-cytoplasm. For restoring male fertility in the hybrids, dominant, nuclear restorer genes are necessary. However, current pollinator lines are only partial restorers. Effective restorers were recently detected in the German inbred line L18 and in materials originating from the Argentinian rye cultivar Pico Gentario and an Iranian primitive rye accession called IRAN IX. F2 populations were developed for each of these three restorer sources to map the responsible genes by means of RFLP (restriction fragment length polymorphism) markers. For this purpose, homo- and heterologous DNA probes were used leading to 101 polymorphic marker loci in total. For phenotypic evaluation, 100 to 134 randomly chosen plants from each of the populations were cloned and grown at two or three locations with two plants each. Segregation ratios of pollen fertility in the F2 populations with L18 and IRAN IX were in accordance with a monogenic dominant inheritance. The segregation pattern for Pico Gentario indicated complementary gene action. Major dominant restorer genes were detected on chromosomes 1RS (L18) and 4RL (Pico Gentario, IRAN IX). The gene on 1RS explained 54% of the phenotypic variation and that on 4 RL 59% and 68% in the Pico Gentario and IRAN IX populations, respectively. Additionally, three minor genes from L18 were identified on chromosomes 3RL, 4RL and 5R. In the Pico Gentario population, a dominant modifier gene contributed by the female parent was found on chromosome 6R. This gene significantly enhanced the expression of the major restorer gene but on its own was not able to restore any degree of fertility. The map-distances between the major restorer loci and at least one flanking marker were small in all three F2 populations (5–6 cM). In Pico Gentario an unfavorable linkage exists between the major restorer gene and a QTL for plant height. Since highly effective restorers are scarce in actual breeding populations, the major restorer genes detected on chromosomes 1 RS and 4RL should be introgressed into actual restorer lines. This is facilitated by using the closely linked molecular markers described. Received: 10 February 2000 / Accepted: 31 March 2000<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

8.
Summary Transmission of extra genome chromosomes by three Vaccinium ashei (2n=6x=72)/V. corymbosum (2n=4x=48) pentaploid hybrids backcrossed to the hexaploid species V. ashei was examined. Chromosome numbers were determined for 36 and 31 progeny representing 5x × 6x and 6x × 5x type crosses, respectively. Chromosome numbers ranged from hypopentaploid (2n=4x+11=59) to hexaploid with means of 2n=66.2 for 5x × 6x progeny and 2n=68.0 for 6x × 5x progeny, representing overall extra genome chromosome gains of 3.3% and 33.3%, respectively. Extra chromosome number distributions for both the 5x × 6x and x × 5x progeny deviated significantly from the theoretical distribution assuming random chromosome transmission and were also found to be heterogeneous. The 2n=5x+9=69 class predominated in 6x × 5x progeny, while a predominate class was lacking in the 5x × 6x progeny. Higher than expected frequencies of plants with chromosome numbers near the pentaploid and hexaploid levels were found in the 5x × 6x progeny, whereas the frequency was only greater at the hexaploid number in 6x × 5x progeny. Present and previous results (Vorsa et al. 1986) indicate that extra genome chromosome transmission in oddploids can be influenced by selection at both gametophytic (pollen) and post-zygotic stages. However, post-zygotic selection may involve two different mechanisms acting concurrently: 1) chromosome imbalance due to aneuploidy and/or 2) endosperm imbalance referring to maternal: paternal genome ratios deviating from 21. Such a mechanism could result in differential transmission rates of extra genome chromosomes in oddploids when crosses are made to differing ploidy levels, and to reciprocal differences as well.  相似文献   

9.
Conventional observations of mitotic chromosomes from two male blue foxes, revealing a centric-fusion translocation and whole-arm heterochromatin, were verified by synaptonemal complex analysis. This analysis revealed that the centric fusion had been preceded by a conspicuous loss of chromosome material in the two one-armed chromosomes involved, but the chromosomal origin of the centric-fusion kinetochore could not be established. The nontranslocated chromosomes of the trivalent, which in all cells but one were in cis configuration, had reached by early pachytene a stage in which almost complete homologous pairing and nonhomologous association or pairing of the free ends of the chromosomes could be observed. In later stages, complete pairing of the nontranslocated chromosomes with the corresponding arms of the centric-fusion translocation was seen occasionally. One to six autosomal bivalents demonstrated unpaired heterochromatic arms in early pachytene, and the heterochromatic chromosome arms were sometimes unpaired even in late pachytene. Some of them showed a distinct size heteromorphism in late zygotene and early pachytene. In most late-pachytene cells, however, the heteromorphic chromosomes were completely length-adjusted. Only a small fraction of the cells showed pairing interference between nonhomologous chromosomes.  相似文献   

10.
Summary F1 hybrids with the genome constitution ABDERR (2n = 6x = 42) or ABDE(AB)RR (2n = 7x = 49), selected from crosses between either an octoploid Triticum aestivum/Thinopyrum elongatun amphiploid and tetraploid Secale cereale (AABBDDEE x RRRR) or autoallohexaploid triticale [AABBDDEE x (AB)(AB)RRRR], were backcrossed to tetraploid triticale (AB)(AB)RR and selfed for six generations. Thirty-three different tetraploid F6 progenies were karyotyped using C-banding. The aneuploidy frequency was 6.6% with 4.0% hypoploids and 2.6% hyperploids. Among 71 plants with 28 chromosomes, 53.5% had a stabilized karyotype while 46.5% were unstabilized with at least one homoeologous group segregating for A-, B-, or D-genome chromosomes. The stabilized plants represent 19 different tetraploid karyotypes with six of them not containing any detectable D-genome chromosomes from T. aestivum or E-genome chromosome from Th. elongatum. Thirteen lines were (ABD)(ABD)RR tetraploids with one-to-three disomic substitutions of D-genome chromosomes for A or B-genome chromosomes. No disomic substitution of E-genome chromosomes was identified. On average 0.58 D substitutions per line were determined. Of the seven D-genome chromosomes only four, 1D, 2D, 5D, and 7D, were present in their disomic state. In unstabilized karyotypes, chromosomes 3D, 4D, and 6D were present in their monosomic state. Among all 30 viable plants (42.3%), the order of decreasing frequency of Dgenome chromosomes was 5D (25.0%), 1D (20.0%), 2D (10.0%), 6D (5.0%), and 3D (1.7%). Plants with 4D and 7D chromosomes were not viable. An increase in the number of D-genome chromosomes in the (ABD) genome is associated with a decrease in viability and fertility. Minor differences in the C-banding of chromosomes in homoeologous groups 1, 5, and 6 indicate the possibility of translocations between A-, B-, D-, and E-genome chromosomes. Evolutionary and breeding aspects of tetraploid triticale with mixed genomes are discussed.  相似文献   

11.
Oryza australiensis, a diploid wild relative of cultivated rice, is an important source of resistance to brown planthopper (BPH) and bacterial blight (BB). Interspecific hybrids between three breeding lines of O. sativa (2n=24, AA) and four accessions of O. australiensis (2n=24, EE) were obtained through embryo rescue. The crossability ranged from 0.25% to 0.90%. The mean frequency of bivalents at diakinesis/metaphase I in F1 hybrids (AE) was 2.29 to 4.85 with a range of 0–8 bivalents. F1 hybrids were completely male sterile. We did not obtain any BC1 progenies even after pollinating 20,234 spikelets of AE hybrids with O. sativa pollen. We crossed the artificially induced autotetraploid of an elite breeding line (IR31917-45-3-2) with O. australiensis (Acc. 100882) and, following embryo rescue, produced six F1 hybrid plants (AAE). These triploid hybrids were backcrossed to O. sativa. The chromosome number of 16 BC1 plants varied from 28 to 31, and all were male sterile. BC2 plants had 24–28 chromosomes. Eight monosomic alien addition lines (MAALs) having a 2n chromosome complement of O. sativa and one chromosome of O. australiensis were selected from the BC2 F2 progenies. The MAALs resembled the primary trisomies of O. sativa in morphology, and on the basis of this morphological similarity the MAALs were designated as MAAL-1, -4, -5, -7, -9, -10, -11, and -12. The identity of the alien chromosome was verified at the pachytene stage of meiosis. The alien chromosomes paired with the homoeologous pairs to form trivalents at a frequency of 13.2% to 24.0% at diakinesis and 7.5% to 18.5% at metaphase I. The female transmission rates of alien chromosomes varied from 4.2% to 37.2%, whereas three of the eight MAALs transmitted the alien chromosome through the male gametes. BC2 progenies consisting of disomic and aneuploid plants were examined for the presence of O. australiensis traits. Alien introgression was detected for morphological traits, such as long awns, earliness, and Amp-3 and Est-2 allozymes. Of the 600 BC2 F4 progenies 4 were resistant to BPH and 1 to race 6 of BB. F3 segregation data suggest that earliness is a recessive trait and that BPH resistance is monogenic recessive in two of the four lines but controlled by a dominant gene in the other two lines.  相似文献   

12.
An isochromosome was found in the maize HiII Parent B line during somatic karyotyping with a multiprobe fluorescence in situ hybridization (FISH) system. Cytological analyses showed that it pairs with the short arm of chromosome 8 during the pachytene stage of meiosis. The chromosome 8 short arm origin of this isochromosome was also confirmed by FISH at mitotic metaphase. Knob heterochromatin signals were present at the short arms of chromosome 8 when subjected to prolonged exposure and also observed at both ends of the isochromosome. This isochromosome can be a univalent or a trivalent by pairing with the normal chromosome 8 short arms during meiosis. At anaphase and telophase, the isochromosome lagged behind other chromosomes. It had a transmission rate of 17%-20% from both male and female gametes. One plant homozygous for the isochromosome contained 2 isochromosomes that differed in the quantity of their CentC centromere repeat sequence. Both variations of the isochromosome were transmitted to the next generation. Because the 2 isochromosomes should be identical by descent, these observations document a radical change in copy number of the centromere repeat array within 1 generation. Plants with 1 isochromosome were not normal as compared with the original HiII Parent B plants. Those that contained a pair of this isochromosome (6 total copies of 8S) were even more abnormal and had reduced fertility. The results indicate the ability of the somatic karyotyping system to recognize and characterize chromosomal aberrations.  相似文献   

13.
D. J. Coates  D. Smith 《Chromosoma》1984,90(5):338-348
The spatial distribution of chromosomes has been analysed in radial metaphase neuroblast cells in F1 hybrid embryos generated by crossing individuals of the Moreton and Torresian (TT) chromosomal taxa of the grasshopper Caledia captiva. The Moreton individuals were of two kinds depending on whether they carried an acrocentric X (MAX) or a metacentric X (MMX). No significant associations were detected between any pair of homologous chromosomes in either male or female (MAX x TT) and (MMX x TT) F1 hybrids. This result was supported by data which showed that the mean separation between homologues is greater, although not significantly so, than the mean separation between non-homologous chromosomes within the two Moreton genomes. Indeed, in a number of cases, genome separation was clearly observed in radial metaphase preparations from these F1 hybrids. By comparison the analysis of pairwise associations between non-homologous chromosomes within the MMX and MAX Moreton genomes revealed a number of significant associations and dissociations which strongly suggests that at least some chromosomes in these genomes are organised non-randomly at metaphase. Of particular interest was the highly significant X-5 association in the MMX genome since in a previous study X-5 rearrangements were found to occur repeatedly among different backcross progeny involving Moreton x Torresian F1 hybrids. Additionally a comparison of the organisation of chromosomes in the MAX and MMX genomes, which differ primarily by the type of X chromosome, revealed that in a number of cases pairs of chromosomes are arranged very differently with respect to each other. The distribution of chromosomes on the hollow spindle was also analysed to investigate whether a specific spatial ordering of chromosomes exists within these Moreton genomes based on the association of pairs of short arms and pairs of long arms of most similar length (the Bennett model). The twelve chromosomes in both genomes were uniquely ordered in a single chain. However, because of computing limitations, only the ordered arrangement of chromosomes 1–10 was investigated. An analysis of 48 cells in the MMX and 38 cells in the MAX genomes showed that the predicted order in the ten chromosome sub-set in each genome did not rank in the top 20% of the 181,440 possible orders. This suggests that, although there is a good evidence that some non-homologous chromosomes may be associated non-randomly at metaphase in these genomes, they do not appear to show a specific, ordered arrangement as predicted by the Bennett model. The significance of the observed non-random organisation of chromosomes in the MMX and MAX genomes is discussed in relation to the generation of novel chromosome rearrangements in Moreton x Torresian F1 hybrids and the evolution of the Moreton and Torresian genomes.  相似文献   

14.
N S Kim  J Kuspira 《Génome》1993,36(3):565-579
Cytogenetic studies in Triticum monococcum (2n = 2x = 14, AA) were initiated by generating a series of primary as well as double and triple trisomics from autotriploids derived from crosses between induced autotetraploids and a diploid progenitor. Analysis of meiotic chromosome behaviour revealed that, with the exception of primary trisomics for chromosome 7A, the chromosome present in triple dose in all other trisomics formed either a bivalent plus a univalent or a trivalent (always V shaped) at diakinesis - metaphase I in approximately equal proportions. Trisomics for chromosome 7A formed a bivalent plus a univalent or a trivalent in approximately a 1:2 ratio. About 99% of the anaphase I segregations in all the trisomics were seven to one pole and eight to the other, suggesting that primary trisomics in T. monococcum form n and n + 1 meiotic products in equal proportions. The double trisomics and triple trisomics formed 5 II + 2 III and 4 II + 3 III during metaphase I, respectively. A majority of the secondary meiocytes from the double and triple trisomics possessed unbalanced chromosome numbers. All the trisomics differed phenotypically from their diploid progenitors. Single primary trisomics for chromosomes 3A and 7A produced distinct morphological features on the basis of which they could be distinguished. The phenotypes of the double and triple trisomics deviated to a greater extent from that of diploids than those of the single trisomics. Less than 50% of the progeny of all primary trisomics were trisomics themselves. Trisomic progeny were not produced in diploid female x trisomic male crosses, indicating that functional n + 1 male gametes were not generated. Diploid as well as trisomic progeny were produced in the reciprocal crosses and upon self-fertilization of the trisomics. The average frequency of trisomic progeny was 9.9%. The fertility of primary trisomics ranged from 3.8% in trisomics for chromosome 1A to 40.6% in trisomics for chromosome 2A and was significantly less than that of diploids (99.6%). The breeding behaviour and low fertility of these trisomics make their maintenance and use in cytogenetic analyses difficult.  相似文献   

15.
Khush GS  Singh RJ  Sur SC  Librojo AL 《Genetics》1984,107(1):141-163
Twelve primary trisomics of Oryza sativa L. were isolated from the progenies of spontaneous triploids and were transferred by backcrossing to the genetic background of IR36, a widely grown high yielding rice variety. Eleven trisomics can be identified morphologically from one another and from diploids. However, triplo 11 is difficult to distinguish from diploid sibs.—The extra chromosome of each trisomic was identified cytologically at pachytene stage of meiosis, and the chromosomes were numbered according to their length at this stage. The major distinguishing features of each pachytene chromosome were redescribed.—The female transmission rates varied from 15.5% for triplo 1, the longest chromosome, to 43.9% for triplo 12, the shortest chromosome. Seven of the 12 primary trisomics transmitted the extra chromosome through the male. The low level of chromosomal imbalance tolerated by rice and other evidence are interpreted to indicate that this species is a basic diploid.—Genetic segregation for 22 marker genes in the trisomic progenies was studied. Of a possible 264 combinations, involving 22 genes and 12 trisomics, 120 were examined. Marker genes for each of the 12 chromosomes were identified. The results helped establish associations between linkage groups and cytologically identifiable chromosomes of rice for the first time. Relationships between various systems of numbering chromosomes, trisomics, linkage groups and marker genes are described, and a revised linkage map of rice is presented.  相似文献   

16.
J Imanywoha  K B Jensen  D Hole 《Génome》1994,37(3):469-476
Six of the seven possible primary trisomics in Agropyron cristatum were produced. Based on morphology, arm length ratios, and C-banding patterns, they were identified as primary trisomics for chromosomes A, B, C, D, E, and G. Agropyron cristatum is one of several species constituting the crested wheatgrass complex. All species in this complex contain one basic genome (P). A study was conducted to produce and identify a primary trisomic series that will be used to map genes to individual chromosomes. A population of 157 plants were generated by crossing autotriploids (PPP) with diploid (PP) A. cristatum: 58 were diploid (2n = 14), 76 were primary trisomies (2n = 15), 17 were double trisomic (2n = 16), 4 were triple trisomics (2n = 14 + 3), 1 was telocentric trisomic (2n = 14 + 1 telo), and 1 was tetratrisomic (2n = 14 + 4). Karyotype analysis of acetoorcein-stained chromosomes was carried out using the CHROMPAC III computer program; for analysis of C-banded karyotypes, the computer imaging analysis program PCAS (Plant Chromosome Analysis System) was used to identify the primary trisomics. Of the 47 primary trisomics analyzed, 21 plants had one extra satellited chromosome E, 18 with the satellited D chromosome, 3 each for chromosomes B and G, and 1 each for chromosomes C and A. Chromosome pairing was studied in trisomies B, D, E, and G. Trisomics for chromosomes B and G were similar in their mieotic behavior. Each had a trivalent frequency of about 60% and pollen stainability of less than 40%. Trisomics for chromosomes D and E had a trivalent frequency of about 30% and pollen stainability of over 70%.  相似文献   

17.
Gene flow from glufosinate-resistant transgenic oilseed rape to wild radish was studied over two backcross generations. Under field conditions,?seed production from oilseed rape-wild radish F1 hybrids due to pollination by wild radish was always low: on average 0.12 and 0.78 seeds per 100 flowers and per plant, respectively. The cytogenetics of the resulting «BC1» plants can be explained in the main by three different genomic constitutions: either ACRrRr, 2n=37, ACRr, 2n=28 (the same chromosome number as the mother plant), or by the amphidiploid AACCRrRr, 2n=56. The probability of gene exchange through chromosome pairing was high only in plants with 2n=28 or 37 chromosomes. Due to the viability of unreduced or partially reduced female gametes, most of the «BC1» plants (81.9%) were Basta resistant whereas the analysis of oilseed rape specific loci indicated that their transmission varied with the locus. In spite of low male fertility (8.7%), an improvement of the female fertility over the F1 hybrids was observed with an average production of 1.4 and 11 seeds per 100 flowers and per plant, respectively. At the following «BC2» generation, the bar gene transmission (57.2% of Basta-resistant plants) decreased as did the chromosome number, with a majority of plants having between 24 and 27 chromosomes, with 10.5% similar to wild radish (2n=18). The lower the chromosome number, the better the fertility of the «BC2» plants. On average, 7.9 and 229.3 seeds per 100 flowers and per plant were produced. Gene-flow assessment is discussed based on these data.  相似文献   

18.
The mode of inheritance of supernumerary segments located on three different chromosome pairs was investigated in controlled crosses with specimens of the grasshopper Chorthippus jacobsi. While extra segments located on chromosomes M5 and M6 showed Mendelian inheritance, that on S8 did not. Thus, the two supernumerary heterochromatic chromosome segments located distally on the S8 chromosome accumulated through non-Mendelian transmission through both sexes. The observed transmission patterns may be explained by gametic selection for spermatozoa carrying segmented S8 chromosomes, in addition to meiotic drive for segmented S8 chromosomes in heterozygous females. The significance of these findings for the maintenance of these polymorphisms in natural populations is discussed.by S.A. Gerbi  相似文献   

19.
F Ahmad  T Hymowitz 《Génome》1994,37(1):133-136
Primary trisomics are ideal cytogenetic tools for associating genes and linkage groups to known chromosomes and testing their independence. In the cultivated soybean, only 8 of the possible 20 primary simple trisomics are known. In this report cytological evidence for the identification of five more new primary simple trisomics, corresponding to chromosomes 6, 8, 12, 16, and 19, is presented for the first time. The precise identification was based on trivalent configuration of chromosomes at the pachynema stage of meiosis, where the chromosomes were identified by their characteristic total length, arm ratio, and distribution of heterochromatin and euchromatin. Cytological observation of chromosome pairing in the 2n = 42 chromosome F1 plants, obtained from eight crosses between known primary trisomics, also supported the identification of primary trisomics in soybean based on pachytene chromosome analysis. Together with the eight primary trisomics identified previously, 13 of the possible 20 primary simple trisomics have been successfully identified, which accounts for about 76% of the total nuclear euchromatin in soybean.  相似文献   

20.
Cytology and breeding behavior of Solanum commersonii - S. tuberosum hybrids derived from 3 x x 4 x crosses was examined. The chromosome number of hybrids ranged from hypo-pentaploid (2 n=5 x - 8=52), to hyper-pentaploid (2 n=5 x + 7=67), with the euploid pentaploid 2 n=5 x=60 class predominant. The high variability in chromosome number of the 3 x x 4 x hybrids was attributed to the fact that meiotic restitution during megasporogenesis of the 3 x female may have involved poles with various chromosome numbers, resulting in 2 n eggs with 24-48 chromosomes. Microsporogenesis analyses provided evidence that chromosome pairing between S. commersonii and S. tuberosum genomes occurred. In addition, chromosome distribution at anaphase I and anaphase II revealed an average chromosome number of 29.5 and 29.1 per pole, respectively. To further study the extent of transmission of extra genome chromosomes from pentaploids, 5 x x 4 x and 4 x x 5 x crosses were performed, and the chromosome number of resulting progeny was determined. Ploidy ranged from 2 n=4 x=48 to 2 n=5 x=60 following 5 x x 4 x crosses, and from 2 n=4 x + 1=49 to 2 n=5 x=60 following 4 x x 5 x crosses. These results provided indirect evidence that the pentaploid hybrids produced viable aneuploid gametes with a chromosome number ranging from 24 to 36. They also demonstrated that gametes with large numbers of extra chromosomes can be functional, resulting in sporophytes between the 4 x and 5 x ploidy level. Fertility parameters of crosses involving various (aneuploid) pentaploid genotypes were not influenced by chromosome number, suggesting a buffering effect of polyploidy on aneuploidy. The possibility of successfully using (aneuploid) pentaploid genotypes for further breeding efforts is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号