首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. J. Oparka  N. Harris 《Planta》1982,154(2):184-188
The ultrastructure of protein deposition in the starchy endosperm of developing rice (Oryza sativa L.) grains was examined in conventionally fixed (glutaraldehyde and osmium tetroxide) tissues and also in thick sections (0.3 m) of zinc iodide-osmium tetroxide post-fixed tissue. Three types of previously characterised protein body were observed and it was shown that each type was initiated by dilations of the endoplasmic reticulum. Crystalline type protein bodies were initiated by a ribosome-free dilation from rough cisternal endoplasmic reticulum and developed by inclusion of protein from dictyosome-derived vesicles. The large spherical and small spherical protein bodies developed within the cisternae of the rough endoplasmic reticulum.Abbreviations Cr crystalline protein body - DAF days after fertilization - ER endoplasmic reticulum - Ls large spherical protein body - Ss small spherical protein body - ZIO zinc iodide-osmium tetroxide  相似文献   

2.
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain   总被引:1,自引:0,他引:1  

Background and Aims

Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality.

Methods

Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers.

Key Results

Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain.

Conclusions

Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.  相似文献   

3.
The endosperm of Washingtonia filifera consists of living cells with the same general cellular structure throughout the seed. The major storage reserves are carbohydrate, stored in the form of thickened walls; lipid, stored as numerous small lipid bodies which fill the cytoplasm; and protein, stored as large, but variably-sized, protein bodies. The protein bodies contain two types of inclusions: prismatically-shaped denser protein crystalloids and small crystalline deposits presumed to be phytic acid. The X-ray microanalysis shows these crystalline inclusions do contain P, Ca, Mg, and Fe. Protein bodies are positively stained with PAS. Nuclei are present in all cells, but stain very palely. Plastids and mitochondria are present, but infrequently seen. The plastids have few, poorly developed membranes. Endoplsasmic reticulum and dictyosomes are lacking. The cell wall is thick except in areas of pit fields and consists of three layers which differ in their staining with toluidine blue and in their ultrastructural characteristics: middle lamella, thickened outer wall, and thin inner wall. All wall layers are positively stained with PAS and calcofluor. Although general structural features of the endosperm in Washingtonia filifera are similar to those in date seeds, the composition of the wall polysaccharides and protein bodies appear to differ somewhat.  相似文献   

4.
The cereal endosperm is a storage organ consisting of the central starchy endosperm surrounded by the aleurone layer. In barley, endosperm development is subdivisible into four main stages, i.e. the syncytial (I), the cellularization (II), the differentiation (III) and the maturation stage (IV). During stage I, a multinucleate syncytium is formed, which in stage II develops into the undifferentiated cellular endosperm. During stage III the cells of the endosperm differentiate into two types of aleurone cells (peripheral and modified) and three different starchy endosperm cell types (irregular, prismatic and subaleurone). To elucidate the ontogenetic relationship between the endosperm tissues, the phenotypes of sex (shrunken endosperm mutants expressing xenia) mutant endosperms were studied. These mutants can be classified into two groups, i.e. those in which development is arrested at one of the four wild-type stages described above, and those with abnormal development with new organizational patterns in the endosperm or with novel cell types. Based on these studies, it is suggested that the two endosperm halves represent cell lines derived from the two daughter nuclei of the primary endosperm nucleus, and that the prismatic starchy endosperm cells arise from a peripheral endosperm meristematic activity during stage III. Finally, a model for the main molecular events underlying the morphogenetic processes is discussed.  相似文献   

5.
Changes in ultrastructure of protein bodies in subaleurone cells of rice endosperm during germination were studied by transmission electron microscopy. The subaleurone cells contained two different types of protein bodies: PB-I (spherical) and PB-II (crystalline). Both types of protein bodies were deconstructed during germination. But there was a considerable difference in digestibility between PB-I and PB-II. PB-II which did not have a dense core was easily digested from the central portion when germination began. At 6 days of germination, PB-II was almost deconstructed. On the other hand, PB-I which displayed concentric rings with a dense core was digested from the outside after 3 days of germination. At 9 days of germination, many kernels of the spherical protein bodies remained.

Changes in subunit composition of protein bodies during germination were investigated by SDS-polyacrylamide gel electrophoresis. Protein body fractions were isolated from germinating grains at various stages by enzymatic digestion and two-phase system, then subjected to SDS-polyacrylamide gel. As germination proceeded, 15 (b1), 20 (d1), 24 (e), 35 (f1) and 37 (f3) kdaltons subunits decreased. On the other hand, 16 (b2), 21 (d2) and 36 (f2) k daltons subunits remained at the later stage of germination. We think that PB-I contains b2, d2 and f2 subunits and is attacked only from the outside at middle and later stages of germination by de novo protease. On the contrary, PB-II contains b1 d1 e, f1 and f3 subunits is utilized at an early stage of germination. PB-II may possibly contain latent protease. The breakdown process of PB-I was by exo-type digestion, on the contrary, that of PB-II was by endo-type digestion.  相似文献   

6.
Zeins, the seed storage proteins of maize, are synthesized during endosperm development by membrane-bound polyribosomes and transported into the lumen of the endoplasmic reticulum, where they assemble into protein bodies. To better understand the distribution of the various zeins throughout the endosperm, and within protein bodies, we used immunolocalization techniques with light and electron microscopy to study endosperm tissue at 14 days and 18 days after pollination. Protein bodies increase in size with distance from the aleurone layer of the developing endosperm; this reflects a process of cell maturation. The protein bodies within the subaleurone cell layer are the smallest and contain little or no alpha-zein; beta-zein and gamma-zein are distributed throughout these small protein bodies. The protein bodies in cells farther away from the aleurone layer are progressively larger, and immunostaining for alpha-zein occurs over locules in the central region of these protein bodies. In the interior of the largest protein bodies, the locules of alpha-zein are fused. Concomitant with the appearance of alpha-zein in the central regions of the protein bodies, most of the beta- and gamma-zeins become peripheral. These observations are consistent with a model in which specific zeins interact to assemble the storage proteins into a protein body.  相似文献   

7.
Development of the Endosperm of Wheat   总被引:7,自引:0,他引:7  
EVERS  A. D. 《Annals of botany》1970,34(3):547-555
Mid transverse sections of kernels from developmental seriesof English spring wheats were examined in order to study themodes of formation of subaleurone endosperm cells and thoseof the inner endosperm. It was found that the two types of cellarise by the same process but differ in respect of time of initiation.As a result of differences in age the two cell types differin the amount of starch they contain. The amount of proteinis similar in subaleurone and inner endosperm cells; however,because of greater dilution with starch and consequently largercell size in the inner endosperm, the protein concentrationis higher in the subaleurone endosperm. The significance of the modified aleurone layer at the innerextremity of the crease has been investigated. The difference in function of this region from that of the remainderof the aleurone layer is of some importance in the formationof the crease.  相似文献   

8.
Antibodies raised against purified glutelins and prolamines were employed as probes to study the cellular routes by which these proteins are deposited into protein bodies of rice (Oryza sativa L.) endosperm. Three morphologically distinct protein bodies, large spherical, small spherical, and irregularly-shaped, were observed, in agreement with existing reports. Immunocytochemical studies showed the presence of glutelins in the irregularly-shaped protein bodies while the prolamines were found in both the large and small spherical protein bodies. Both the large and small spherical protein bodies, distinguishable by electron density and gold-labeling patterns, appear to be formed by direct deposition of the newly formed proteins into the lumen of the rough endoplasmic reticulum (ER). In contrast, glutelin protein bodies are formed via the Golgi apparatus. Small electron-lucent vesicles are often found at one side of the Golgi. Electron-dense vesicles, whose contents are labeled by glutelin antibody-gold particles, are commonly observed at the distal side of the Golgi apparatus and fuse to form the irregularly shaped protein bodies in endosperm cells. These observations indicate that the transport of rice glutelins from their site of synthesis, the ER, to the site of deposition, the protein bodies, is mediated by the Golgi apparatus.Abbreviations BSA bovine serum albumin - Da dalton - DAF days after flowering - ER endoplasmic reticulum - GL irregularly shaped - L large spherical - S small spherical (protein bodies) - PBS phosphate-buffered saline - PTA phosphotungstic acid  相似文献   

9.
To compare oat (Avena sativa L. cv Froker) aleurone protein bodies with those of the starchy endosperm, methods were developed to isolate these tissues from mature seeds. Aleurone protoplasts were prepared by enzymic digestion and filtration of groat (caryopsis) slices, and starchy endosperm tissue was separated from the aleurone layer by squeezing slices of imbibed groats followed by filtration. Protein bodies were isolated from each tissue by sucrose density gradient centrifugation. Ultrastructure of the isolated protein bodies was not identical to that of the intact organelles, suggesting modification during isolation or fixation. Both aleurone and starchy endosperm protein bodies contained globulin and prolamin storage protein, but minor differences in the protein-banding pattern by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were evident. The amino acid compositions of the protein body fractions were similar and resembled that of oat globulin. The aleurone protein bodies contained phytic acid and protease activity, which were absent in starchy endosperm protein bodies.  相似文献   

10.
The mechanism of protein body formation in the starchy endospermis described for two rice varieties, one of normal protein contentand the other high in protein. Three types of protein bodieswere found in both rices. While each protein body type was depositeddifferently, the mechanism of formation for the same type inthe two varieties was analogous. First secreted was the largespherical protein body. It was deposited within rough endoplasmicreticulum, had a dense centre and a concentric ring appearance,and was bounded by a single membrane. The second protein bodyto form was crystalline, was found in vacuoles, and was secretedvia the Golgi apparatus. The third type, the small sphericalprotein body, was secreted late in development, was depositedin vesicular rough endoplasmic reticulum, and lacked dense centresand concentric rings. The high protein rice had a thicker sub-aleuronelayer than the normal protein rice. Oryza sativa L., rice, protein bodies, starchy endosperm, ultrastructure  相似文献   

11.
Duan  Luning  Han  Shichen  Wang  Ke  Jiang  Peihong  Gu  Yunsong  Chen  Lin  Mu  Junyi  Ye  Xingguo  Li  Yaxuan  Yan  Yueming  Li  Xiaohui 《Plant molecular biology》2020,102(1-2):225-237
Key message

The specific and high-level expression of 1Ax1 is determined by different promoter regions. HMW-GS synthesis occurs in aleurone layer cells. Heterologous proteins can be stored in protein bodies.

Abstract

High-molecular-weight glutenin subunit (HMW-GS) is highly expressed in the endosperm of wheat and relative species, where their expression level and allelic variation affect the bread-making quality and nutrient quality of flour. However, the mechanism regulating HMW-GS expression remains elusive. In this study, we analyzed the distribution of cis-acting elements in the 2659-bp promoter region of the HMW-GS gene 1Ax1, which can be divided into five element-enriched regions. Fragments derived from progressive 5′ deletions were used to drive GUS gene expression in transgenic wheat, which was confirmed in aleurone layer cells, inner starchy endosperm cells, starchy endosperm transfer cells, and aleurone transfer cells by histochemical staining. The promoter region ranging from ??297 to ??1 was responsible for tissue-specific expression, while fragments from ??1724 to ??618 and from ??618 to ??297 were responsible for high-level expression. Under the control of the 1Ax1 promoter, heterologous protein could be stored in the form of protein bodies in inner starchy endosperm cells, even without a special location signal. Our findings not only deepen our understanding of glutenin expression regulation, trafficking, and accumulation but also provide a strategy for the utilization of wheat endosperm as a bioreactor for the production of nutrients and metabolic products.

  相似文献   

12.
利用ATPase定位技术,对水稻品种(Oryza sativa L.cv.Minghui 63)胚乳细胞发育中后期淀粉体和蛋白体的ATPase活性进行了超微细胞化学定位。结果表明,在淀粉体内外膜上、淀粉粒间的通道上和淀粉体四周的无定形物上呈现显著的ATPase活性。蛋白体Ⅰ和蛋白体Ⅱ的膜上和四周的囊泡、小泡上均出现ATPase活性产物。另外,胚乳细胞的胞壁和质膜,糊粉层和亚糊粉层细胞的胞壁、质膜、细胞核和胞间连丝上也有定位的ATPase活性产物分布。根据ATPase活性产物分布特点,推测淀粉体内的网状通道是便于养分进入淀粉体内部的转运通道。淀粉体膜和蛋白体膜上的ATPase主要是为养分进入内部提供跨膜动力。  相似文献   

13.
Wheat is a major source of protein in the diets of humans and livestock but we know little about the mechanisms that determine the patterns of protein synthesis in the developing endosperm. We have used a combination of enrichment with 15N glutamine and NanoSIMS imaging to establish that the substrate required for protein synthesis is transported radially from its point of entrance in the endosperm cavity across the starchy endosperm tissues, before becoming concentrated in the cells immediately below the aleurone layer. This transport occurs continuously during grain development but may be slower in the later stages. Although older starchy endosperm cells tend to contain larger protein deposits formed by the fusion of small protein bodies, small highly enriched protein bodies may also be present in the same cells. This shows a continuous process of protein body initiation, in both older and younger starchy endosperm cells and in all regions of the tissue. Immunolabeling with specific antibodies shows that the patterns of enrichment are not related to the contents of gluten proteins in the protein bodies. In addition to providing new information on the dynamics of protein deposition, the study demonstrates the wider utility of NanoSIMS and isotope labelling for studying complex developmental processes in plant tissues.  相似文献   

14.
Certain aspects of protocorm development in Vanda were examined ultrastructurally. The parenchymal cells of the protocorm accumulate substantial quantities of lipid, protein, and carbohydrate reserves which disappear gradually with the senescence of the parenchymatous region. The proteinaceous reserves appear initially as discrete bodies which become intimately associated with clusters of small tubules. The tubules eventually disperse throughout the cytoplasm and disappear following depletion of the protein bodies. The lipid reserves also appear as discrete bodies and are associated with an electron dense, laminated inclusion which appears to increase in size with the disappearance of the lipid bodies. While plastids in the meristematic cells differentiate a well-developed thylakoid system and contain little starch, those of the parenchymal cells contain large starch grains and numerous osmiophilic droplets and develop meager thylakoid systems. Membrane-bound crystalline structures of hexagonal and rhomboid cross section occur frequently in the cytoplasm of senescent parenchyma cells. Trichome initials, which differentiate from the epidermis, contain few conventional organelles and exhibit numerous membrane-bound structures containing many small crystalline inclusions. Numerous vesicles accumulate at the tips of the trichomes in spaces between the cell wall and the plasmalemma.  相似文献   

15.
M. L. Parker  C. R. Hawes 《Planta》1982,154(3):277-283
The ultrastructure and distribution of the Golgi apparatus in developing wheat endosperm was investigated using a zinc iodide-osmium tetroxide staining complex in conjunction with low and high voltage electron microscopy. Dictyosomes were numerous in starchy endosperm and aleurone at 15 days after anthesis, and during the period of rapid storage protein deposition 25 d after anthesis. Fewer dictyosomes were seen in maturing endosperm. Two types of vesicles were associated with the dictyosomes; small, heavily-stained vesicles were sited at the ends of fine tubules which extend from the cisternae, and larger less-stained vesicles were associated with the periphery of the cisternae. Stereo-pairs of micrographs up to 1 m thick were taken to demonstrate the interconnections between cisternal and tubular endoplasmic reticulum. Elements of tubular ER were closely associated with dictyosomes, but connections were not observed. These results are discussed in relation to the transport of endosperm storage proteins from their site of synthesis on the cisternal ER to their site of storage, the protein bodies.  相似文献   

16.
The results of a light and electron microscopic study of the caryopsis coat and aleurone cells in ungerminated, unimbibed rice (Oryza sativa) caryopses are presented. Surrounding the rice grain is the caryopsis coat composed of the pericarp, seed coat and nucellar layers. The outermost layer, the pericarp, consists of crushed cells and is about 10 μm thick. The seed coat, interior to the pericarp, is one cell thick and has a thick cuticle. Between the seed coat cuticle and endosperm are the remains of the nucellus. The nucellus is about 2.5 μm thick and has a thick cuticle adjacent to the seed coat cuticle. Interior to the caryopsis coat is the aleurone layer of the endosperm. The aleurone completely surrounds the rice grain and is composed of two cell types—aleurone cells that surround the starchy endosperm and modified aleurone cells that surround the germ. The aleurone cells of the starchy endosperm contain many aleurone grains and lipid bodies around a centrally located nucleus. The modified aleurone cells lack aleurone grains, have fewer lipid bodies than the other aleurone cells, and contain filament bundles (fibrils). Plastids of aleurone cells exhibit a unique morphology in which the outer membranes invaginate to form tubules and vesicles within the plastid. Transfer aleurone cells are not observed in the mature rice caryopsis.  相似文献   

17.
The seed storage proteins of oats (Avena sativa L.) are synthesized and assembled into vacuolar protein bodies in developing endosperm tissue. We used double-label immunolocalization to study the distribution of these proteins within protein bodies of the starchy endosperm. When sections of developing oat endosperm sampled 8 d after anthesis were stained with uranyl acetate and lead citrate, the vacuolar protein bodies consisted of light-staining regions which were usually surrounded by a darker-staining matrix. Immunogold staining of this tissue demonstrated a distinct segregation of proteins within protein bodies; globulins were localized in the dark-staining regions and prolamines were localized in the light-staining regions. We observed two additional components of vacuolar protein bodies: a membranous component which was often appressed to the outside of the globulin, and a granular, dark-staining region which resembled tightly clustered ribosomes. Neither antibody immunostained the membranous component, but the granular region was lightly labelled with the anti-globulin antibody. Anti-globulin immunostaining was also observed adjacent to cell walls and appeared to be associated with plasmodesmata. Immunostaining for both antigens was also observed within the rough endoplasmic reticulum. Based on the immunostaining patterns, the prolamine proteins appeared to aggregate within the rough endoplasmic reticulum while most of the globulin appeared to aggregate in the vacuole.Abbreviations DAA days after anthesis - IgG immunoglobulin G - Mr apparent molecular mass - RER rough endoplasmic reticulum - SDS-PAGE sodium dodecyl sulfate — polyacrylamide gel electrophoresis  相似文献   

18.
Taylor, J. R. N., Novellie, L. and Liebenberg, N. v. d. W. 1985.Protein body degradation in the starchy endosperm of germinatingsorghum.—J. exp. Bot. 36: 1287–1295. Transmission electron micrographs of starchy endosperms of germinatingsorghum indicate that the protein bodies are degraded predominantlyby progressive hydrolysis of prolamin from their surface. Theappearance of holes within partially degraded protein bodiesindicates that some internal hydrolysis also takes place. Chemicalanalyses of protein bodies isolated at different stages duringgermination showed that their amino acid composition and electrophoreticpattern remained relatively unchanged during hydrolysis. Theend result of protein body degradation was that the organellescompletely disappeared leaving empty starchy endosperm cells.The protein bodies did not swell prior to or during degradation.This mode of protein body degradation differs from that in germinatingdicotyledonous seeds and in the aleurone layer and embryo ofcereal seeds but was identical to the mode of prolamin proteinbody degradation in the starchy endosperm of germinating riceseeds. Key words: Sorghum bicolor, protein body degradation, prolamin  相似文献   

19.

Background and Aims

Alpha-gliadin proteins are important for the industrial quality of bread wheat flour, but they also contain many epitopes that can trigger celiac (cœliac) disease (CD). The B-genome-encoded α-gliadin genes, however, contain very few epitopes. Controlling α-gliadin gene expression in wheat requires knowledge on the processes of expression and deposition of α-gliadin protein during wheat grain development.

Methods

A 592-bp fragment of the promotor of a B-genome-encoded α-gliadin gene driving the expression of a GUS reporter gene was transformed into wheat. A large number of transgenic lines were used for data collection. GUS staining was used to determine GUS expression during wheat kernel development, and immunogold labelling and tissue printing followed by staining with an α-gliadin-specific antibody was used to detect α-gliadin protein deposited in developing wheat kernels. The promoter sequence was screened for regulatory motifs and compared to other available α-gliadin promoter sequences.

Key Results

GUS expression was detected primarily in the cells of the starchy endosperm, notably in the subaleurone layer but also in the aleurone layer. The α-gliadin promoter was active from 11 days after anthesis (DAA) until maturity, with an expression similar to that of a 326-bp low molecular weight (LMW) subunit gene promoter reported previously. An α-gliadin-specific antibody detected α-gliadin protein in protein bodies in the starchy endosperm and in the subaleurone layer but, in contrast to the promoter activity, no α-gliadin was detected in the aleurone cell layer. Sequence comparison showed differences in regulatory elements between the promoters of α-gliadin genes originating from different genomes (A and B) of bread wheat both in the region used here and upstream.

Conclusions

The results suggest that additional regulator elements upstream of the promoter region used may specifically repress expression in the aleurone cell layer. Observed differences in expression regulator motifs between the α-gliadin genes on the different genomes (A and B) of bread wheat leads to a better understanding how α-gliadin expression can be controlled.Key words: Alpha-gliadin, promoter, expression, deposition, wheat, Triticum aestivum, grain development  相似文献   

20.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号