首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jasmonates, including jasmonic acid and its derivatives such as methyl jasmonate (MeJA), are plant growth substances that control various responses. Jasmonates regulate leaf trichome density in dicotyledonous plants, but their effects on the trichome density of monocotyledonous plants, such as those in the Poaceae, remain unclear. In the present study we examined the effects of exogenous MeJA on the trichome density of Rhodes grass, which has three kinds of trichomes: macrohairs, salt glands, and prickles. Exogenous MeJA significantly increased the densities of macrohairs and salt glands on the adaxial and abaxial leaf surfaces and those of prickles on the adaxial leaf surface. Because exogenous MeJA significantly reduced the leaf area, we calculated the number of trichomes per 1000 epidermal cells to eliminate the effects of reduced leaf area. Exogenous MeJA significantly increased the number of macrohairs per 1000 epidermal cells on both adaxial and abaxial leaf surfaces, but it significantly decreased the number of salt glands per 1000 epidermal cells on both surfaces. Exogenous MeJA had no significant effects on the number of prickles per 1000 epidermal cells on either of the leaf surfaces. These results indicate that exogenous MeJA alters the trichome density by affecting leaf area and trichome initiation, and the effects of exogenous MeJA on trichome initiation differ among the various trichome types.  相似文献   

2.
Aeluropus littoralis is a perennial halophyte, native to coastal zones. Although it is usually exposed to high saline, this plant grows normally without toxicity symptoms. In order to assess leaf salt excretion, different growth parameters, Na(+), K(+), Ca(2+), Mg(2+) and Cl(-) concentrations, as well as excreted ions were examined in plants grown for 2 months in the presence of various salinity levels (0-800 mM NaCl). In addition, salt crystals, salt glands and other leaf epidermal structures were investigated. Results showed that total plant growth decreased linearly with increase to medium salinity. This reduction concerns mainly shoot growth. In addition, this species was able to maintain its shoot water content at nearly 50% of the control even when subjected to 800 mM NaCl. Root water content seemed to be unaffected by salt. Sodium and chloride ion contents in shoots and in roots increased with salinity concentrations, in contrast to our observation for potassium. However, calcium and magnesium contents were not greatly affected by salinity. Excreted salts in A. littoralis leaves were in favor of sodium and chloride, but against potassium, calcium and magnesium which were retained in plants. Sodium and chloride were excreted from special salt glands, which were scattered on the both leaf surfaces. In addition to salt glands, papillae were the most frequent epidermal structure found on A. littoralis leaves, and are likely involved in A. littoralis salt resistance.  相似文献   

3.
采用光镜和扫描电镜对山东分布的蹄盖蕨科2属(蹄盖蕨属和假蹄盖蕨属)7种植物的根、根茎、叶柄、叶轴、叶表皮、表皮毛和孢子囊进行了形态解剖学的系统研究.结果表明,在形态解剖学方面2属植物的共同特征为:根均为无髓中柱;叶柄基部的双柱型维管束向上渐靠近联合形成1个周韧型维管束;叶上下表皮垂周壁均呈波状;气孔主要为胞环型、周胞型或极附型.2属植物的不同特征是:蹄盖蕨属植物体无毛;而假蹄盖蕨属植物叶片和叶轴上均生有腺毛;蹄盖蕨属植物根皮层外侧为薄壁细胞,假蹄盖蕨属则为棕色厚壁细胞环.研究结果表明蹄盖蕨科为一个自然分类群,并支持假蹄盖蕨属的成立.  相似文献   

4.
北疆荒漠几种盐生(耐盐)植物抗逆附属结构的初步研究   总被引:2,自引:0,他引:2  
陈玲  兰海燕 《广西植物》2012,32(5):686-693
利用石蜡切片、扫描电镜、临时装片等方法,对北疆荒漠的3种藜科植物—灰绿藜、费尔干猪毛菜、蒙古猪毛菜和1种菊科植物—花花柴的表皮附属结构进行了显微和超微观察研究。结果表明:(1)对四种植物的解剖结构观察显示,其叶片都含有角质层;气孔器下陷;茎中含有大量的维管束;多数种的细胞中含有簇状晶体结构;(2)四种植物表皮附属结构研究表明:花花柴表皮具有多细胞组成的盐腺和表皮毛结构;灰绿藜表皮有大量囊泡结构;蒙古猪毛菜叶表皮有短硬毛和乳突状结构;费尔干猪毛菜表皮具大量表皮毛,且表皮毛有节。上述结构和特征反映出不同植物对干旱、盐碱土生境适应的多样性,也为旱生和盐生植物的生理学研究提供了新的实验依据。  相似文献   

5.
刘萍  宋磊  任毅  田先华  张小卉 《西北植物学报》2006,26(11):2208-2213
应用解剖学方法,对铁筷子(Helleborus thibetanusFranch.)(毛茛科)营养器官的结构进行了研究。结果表明,铁筷子根的初生结构观察到三原型、四原型和六原型。营养器官中的维管束在横切面上木质部中的导管分子不呈“V”字形排列;根状茎的次生结构由外向内为表皮、皮层和维管柱,髓射线发达。茎的初生结构中多个维管束排列成环状,维管束鞘分化不明显,节部为单隙三迹,叶迹分别来自于3条维管束或同一条维管束。叶为两面叶,表皮细胞不规则;气孔器只分布于下表皮,为毛茛科典型的无规则型气孔。从铁筷子营养器官的解剖学特点来看,与毛茛科其它植物基本相同,但在营养器官中维管束木质部不呈“V”字形、维管束鞘分化不明显、节部具单叶隙等特征上与其它毛茛科植物不同。  相似文献   

6.
Calcium (Ca) is an important nutrient element for plant growth and development. Nevertheless, excessive Ca restricts plant communities in Ca-rich environments. Lonicera confusa DC. is one species adapted to Ca-rich environments in the karst area of southwest China; however, the anatomical mechanism that allows these plants to respond to a Ca-rich environment remains unclear. L. confusa was cultivated in two types of soil with controlled Ca levels. The ultrastructure of leaves at different developmental stages was observed, and their Ca contents analyzed by laser scanning confocal microscope and energy-dispersive X-ray spectroscopy. There was no significant difference in leaves between the two experimental groups at very early stages of development. The glands of leaves growing in Ca-rich soil became saturated and showed a steady increase of Ca content in the following stages. The Ca level in leaf trichomes also increased steadily, compared with those from Ca-poor soil. When the leaves matured, Ca salts were excreted via stomata of L. confusa from Ca-rich soil. L. confusa had a special anatomical mechanism of responding to Ca-rich environments by excreting Ca salts via stomata, and storing Ca2+ in leaf glands and trichomes.  相似文献   

7.
With the spread of saline soils worldwide, it has become increasingly important to understand salt-tolerant mechanisms and to develop halophytes with increased salt tolerance. Limonium bicolor is a typical recretohalophyte and has a typical salt excretory structure in the epidermis called the salt gland. A method that can be used to screen a large population of L. bicolor mutants for altered salt gland density and altered salt secretion is needed but is currently unavailable. Leaves of 1-month-old L. bicolor seedlings were processed by three traditional methods [epidermal peel, nail impression, and clearing/differential interference contrast microscope (clearing/DIC) method] and a fluorescence method (fluorescence microscopic examination of cleared leaves). With the fluorescence method, the autofluorescence of salt glands under UV excitation (330–380 nm) was easily distinguished with the least labor and time. The fluorescence method was used to screen ~ 10,000 seedlings (which grew from gamma-irradiated seeds). Four mutants with reduced salt gland density and 15 with increased salt gland density were obtained. Both kinds of mutants will be useful for the isolation of genes involved in salt gland development and salt secretion in L. bicolor and other halophytes. The fluorescence method was also successfully used to observe the salt glands of Aegialitis rotundifolia and the stomata and trichomes of Arabidopsis. The fluorescence method described here will be useful for examining plant epidermal structures that have autofluorescence under UV or other wavelengths.  相似文献   

8.
Both chlorcholinchloride and ethrel are used as growth retardants in cereal cultivation. Wheat seedlings were cultivated in nutrient solutions containing 10-3M CCC, CEPA or 5 × 10-4M CCC and CEPA, respectively. The epidermis of full-grown primary leaves was analysed. CCC relatively equally decreases the length of leaves and long epidermal cells, whereas CEPA mainly inhibits cell division. Leaf growth is always a little more inhibited than the number of stomata and trichomes is reduced by CCC or CEPA. This results in an increased frequency of stomata and trichomes by about 14 to 16 per cent. This means that retardants can strongly influence the length of leaves and the length or number of long epidermal cells but, due to the mechanism of programmed determination, the frequency of stomata and trichomes is kept constant within relatively narrow limits. Furthermore it can be concluded that long epidermal cells function as pace-makers in the growth of leaves of monocotyledonous plants.   相似文献   

9.
Summary The contamination of soils with excess salts is one of the greatest challenges to plant survival, but some unique species have evolved to thrive in highly saline environments. One such species, Alhagi graecorum Boiss., has been previously shown to accumulate high levels of sodium while growing in salt marshes. The aim of this research was to investigate the effects of saline conditions on the growth and the regeneration capacity of this species. Plantlets and explants of A. graecorum were cultured on a medium supplemented with various concentrations of NaCl, where A. graecorum tissues accumulated up to 8% Na+. The capacity for regeneration was enhanced by the excess sodium, indicating a requirement of salt for optimal growth and development in this species. Further study of this species may provide new concepts and understanding of the metabolism of sodium in higher plants.  相似文献   

10.
Some salt-tolerant plants belonging to the Poaceae excrete salts to the leaf surfaces under salinity conditions, and the bicellular glands on their leaf surfaces have been postulated to excrete salt. However, clear evidence of the salt excretion from these bicellular salt glands has not been shown at the electron-microscope level because soluble attachments on the leaf surface are completely removed during specimen preparation for conventional electron microscopy. To determine whether the bicellular salt glands actually excrete salt, we examined the leaves of Rhodes grass (Chloris gayana Kunth), Poaceae, by scanning electron microscopy in a low-vacuum mode, which allows to observe specimens without preparation procedures. Unwashed and washed fresh leaf surfaces were examined, and excreted materials on the leaf surface were analyzed by energy dispersive X-ray spectrometry. On the unwashed leaf surfaces, globular materials were observed arranged along the same lines as the macrohairs of the leaf surface, but the salt glands were hardly observed. After leaf surfaces were washed, the globular materials disappeared, and the salt glands appeared localized at the same lines as the macrohairs. Density of the globular materials observed under unwashed conditions and the salt glands under washed conditions was equal. These findings indicate that the glands indeed excrete globular materials just above their cap cells. The excreted materials contained sodium, chlorine, and potassium, and the counts of sodium and chlorine was increased greatly with NaCl treatment of the plants. After removing the excreted materials, most of the cap cells of the salt glands were smooth globular, without ruptures in their cuticle. We conclude that the leaves of Rhodes grass indeed excrete salt from the bicellular salt glands, but without rupturing the cuticle on the cap cell.  相似文献   

11.
Plants have evolved epidermal cells that have specialized functions as adaptations to life on land. Many of the functions of these specialized cells are dependent, to a significant extent, on their arrangement within the aerial epidermis. Considerable progress has been made over the past two years in understanding the patterning mechanisms of trichomes and stomata in Arabidopsis leaves at the molecular level. How universal are these patterning programmes, and how are they adjusted to meet the changing functions of specialized epidermal cells in different plant organs? In this review, we compare the patterning of stomata and trichomes in different plant species, describe environmental and developmental factors that alter cell patterning, and discuss how changes in patterning might relate to cell function. Patterning is an important aspect to the functioning of aerial epidermal cells, and a greater understanding of the processes that are involved will significantly enhance our understanding of how cellular activities are integrated in multicellular plants.  相似文献   

12.
Experiments were conducted to compare the effects of abscisicacid (ABA) and water stress treatments on leaf morphology andfloral development in a spring wheat. In one experiment injectionsof ABA or a control solution were given twice a week into thebase of the main stem for a period of 3 weeks. In a similarexperiment control plants were watered daily and treated plantswere subjected to water stress by watering only once a week.In both experiments the treated plants produced smaller leavesand fewer spikelets per ear. Analysis of epidermal morphologyusing polystyrene imprints of selected leaf blades from themain stem and a tiller of each plant showed that, compared withcontrol plants, both ABA and water stress decreased the meancell size, reduced the number of stomata per leaf, and increasedthe production of trichomes in all the leaves sampled. Datafor stomatal lengths and stomatal indices showed differencesbetween a main stem leaf and a tiller leaf which were consistentfor both experiments. It is concluded that ABA could mediatemany of the responses of wheat plants to prolonged water stress.The possible adaptive value of these responses is discussed.  相似文献   

13.
The histological components of the leaf were studied in dried herbarium material of the three Origanum vulgare subspecies (subsp. hirtum , subsp. viridulum and subsp. vulgare ) grown wild in Greece. These three, geographically distinct, taxa showed remarkable differences in their leaves. The leaves of subsp. hirtum grown in the Mediterranean climatic zone of Greece are characterized by thick cutinized outer walls of the epidermal cells and a thick mesophyll with highly developed chlorophyllous tissues. Peltate glandular trichomes and stomata are numerous on bom leaf surfaces. The thickness of the mesophyll decreases in the other two subspecies grown in the northern part of the country, where a Continental type of climate occurs. The number of glandular trichomes and stomata also decreases. Besides these differences, a noticeable reduction in the size of the essential oil-accumulating subcuticular chamber of the glandular trichomes and in the number of the peribasal cells, has also been recorded in die plants of subsp. vulgare and viridulum.  相似文献   

14.
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongy mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.  相似文献   

15.
新疆2种盐生补血草营养器官的解剖学研究   总被引:5,自引:0,他引:5  
周玲玲  刘萍  王军 《西北植物学报》2007,27(6):1127-1133
采用叶片离析法和石蜡切片法,对生长在新疆盐渍环境中的大叶补血草[Limonium gmelinii(Willd.) Kuntze]和耳叶补血草[Limoniumotolepis(Schrenk) Kuntze]的营养器官解剖学特征进行了观察研究.结果显示,2种补血草属典型泌盐植物,茎和叶片表皮上分布有多细胞组成的盐腺;叶表皮细胞排列紧密,其外切向壁增厚,表皮外还被有厚的角质层;上下表皮都有气孔,气孔与表皮细胞平齐,为不等型气孔;其中大叶补血草为异面叶,而耳叶补血草为等面叶.2种补血草茎中都散生有多轮维管束;大叶补血草根中还有大量通气组织等.研究结果表明,2种补血草的解剖结构表现出与其生境相适应的特征.  相似文献   

16.
珍稀植物扇脉杓兰营养器官的解剖学研究   总被引:1,自引:0,他引:1  
采用石蜡切片技术对扇脉杓兰营养器官的解剖结构进行了研究。结果表明:根状茎的薄壁细胞中含丰富的淀粉粒,维管柱中分布着排列紧凑的周木维管束;根的皮层发达,有的皮层细胞中存在真菌菌丝团,木质部与韧皮部呈辐射状相间排列,根和根状茎的内皮层细胞都形成马蹄形加厚结构。茎的表面分布气孔,皮层面积较小,皮层内部的基本组织发达,外韧维管束散生分布其中,茎和叶上都附有非腺性毛;叶为等面叶,叶肉细胞排列疏松,气孔主要分布于远轴面,略外凸,保卫细胞中含有叶绿体,叶缘处的叶肉组织中含有气腔结构。扇脉杓兰营养器官的这些特征与其荫蔽湿润的生境是相适应的。  相似文献   

17.
西安市常见绿化植物叶片润湿性能及其影响因素   总被引:2,自引:0,他引:2  
利用接触角测定仪测定了西安市21种常见绿化植物叶片表面的接触角,探讨了叶片表面特性如蜡质、绒毛、气孔对接触角的影响。结果表明,植物叶片正背面、物种间的接触角差异均显著,叶片正面和背面接触角大小在40°~140°。接触角大小与变异系数呈负相关,可能由于接触角小的润湿叶片在不同的生境和位置下,受到环境条件的影响较大而出现大的变异;接触角较大的非润湿性叶片,环境物质持留时间较短,对叶片形态和组成影响较小,因而出现小的变异。植物叶片表面的接触角随蜡质含量的升高而增大。表皮蜡质去除后大部分叶片接触角明显降低,尤其是疏水性较强的银杏(Ginkgo biloba)、月季(Ro-sa chinensis)和紫叶小檗(Berberis thunbergii)。女贞(Ligustrum lucidum)正背面、加杨(Popu-lus canadensis)背面等亲水型的叶片蜡质去除后接触角反而增大。叶片绒毛的多少及其形态、分布方式对接触角具有重要的影响,不同的作用方式表现出润湿和不润湿的特征,人为将其去除可以增加叶片的润湿性。背面气孔密度与气孔长度、保卫细胞长度呈负相关;接触角则与气孔密度呈负相关,与气孔长度呈正相关。  相似文献   

18.
Senna plants, native to the arid parts of the northern Sudan,were analysed for mineral cations. Plants tended to accumulate salts in tops, particularly whengrowing in saline soils. Highest concentrations of salts (mostlyCa and Na) were in the leaves with a gradient from bottom totop leaves. Variation in the cation sum was associated withboth Ca and Na contents. Under high salinity, plant growth was reduced without injurysymptoms, but with shedding of some lower leaves. The same symptomswere also noted in plants subjected to soil moisture stress.It is therefore postulated that lower leaf shedding is a physiologicalmeasure for reducing plant salt level and transpiration.  相似文献   

19.
In plants, specialized epidermal cells are arranged in semiordered patterns. In grasses such as maize, stomata and other specialized cell types differentiate in linear patterns within the leaf epidermis. A variety of mechanisms have been proposed to direct patterns of epidermal cell differentiation. One class of models proposes that patterns of cellular differentiation depend on the lineage relationships among epidermal cells. Another class of models proposes that epidermal patterning depends on positional information rather than lineage relationships. In the dicot epidermis, cell lineage is an important factor in the patterning of stomata, but not trichomes. In this study, the role of cell lineage in the linear patterning of stomata and bulliform cells in the maize leaf epidermis is investigated. Clones of epidermal cells in juvenile leaves were marked by excision of dSpm from gl15-m and in adult leaves by excision of Ds2 from bz2-m. These clones were analyzed in relation to patterns of stomata and bulliform cells, testing specific predictions of clonal origin hypotheses for the patterning of these cell types. We found that the great majority of clones analyzed failed to satisfy these predictions. Our results clearly show that lineage does not account for the linear patterning of stomata and bulliform cells, implying that positional information must direct the differentiation patterns of these cell types in maize.  相似文献   

20.
盐生植物星星草叶表皮具有泌盐功能的蜡质层   总被引:20,自引:2,他引:20  
利用扫描电镜和 X射线电子探针研究了星星草 (Puccinellia tenuiflora)的叶表皮及其与生境高盐的关系。结果表明 ,叶表皮由表皮细胞和气孔器组成 ,下表皮气孔器多于上表皮 ,且常下陷 ,表皮具表皮毛。表皮细胞外存在丰富的蜡质纹饰和蜡质颗粒 ,这些蜡质包含盐离子 ,具有泌盐的功能。这些特征表明星星草受外界生态因素的影响 ,而演化出具有泌盐功能的蜡质层来适应所生长的高盐生境  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号