首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewis Walter H. (Stephen F. Austin State Coll., Nacogdoches, Texas.) Aneusomaty in aneuploid populations of Claytonia virginica. Amer. Jour. Bot. 49(9): 918–928. Illus. 1962.—From 2 central east Texas populations of Claytonia virginica, 15 chromosome numbers, 2n = 14, 15, 16, 18, 25, 26, 27, 28, 29 30, 31, 32, 33, 36, and 58, were found among a sample of 181 plants. The most frequently encountered numbers were 2n = 14, 28, and 29. Among an additional 14 plants the pollen mother cells in the same bud differed from one another in chromosome number, as well as the pollen and premeiotic cells from the same plant. The chromosomes of the most unstable plant varied from 2n = 14–36. Numerous meiotic abnormalities, including inversions, dicentrics, bridges, fragments, non-disjunctions, univalents, and multivalents, were observed for the aneusomatic and trisomic plants. It is suggested that the origin of the aneusomatics is related to the numerical disparity of the gametic chromosomes composing them. Since the species is perennial in habit, thereby allowing the unstable plants to produce gametes with varying chromosome numbers year after year, it is further proposed that the wide range of aneuploid known for C. virginica resulted, at least in part from the presence of aneusomatic individuals.  相似文献   

2.
Four flavonoid races have been found in the Claytonia virginica aneuploid complex, differing from one another in the accumulation of 12 kaempferol and quercetin 3-glycosides. Each of these races has a distinctive geographical distribution within the overall range of the species. The three major diploid cytotypes of C. virginica each belong to different races, two of which also include polyploids; a fourth race consists entirely of polyploids. An examination of biosynthetic pathways indicates that a small number of genetic changes are responsible for the observed variation; polyploidy per se does not appear to have contributed significantly to the production of novel compounds. Flavonoid data also suggest strongly that polyploidy within rather than between modern chemical races has been responsible for the bulk of chromosome number variation in the species.  相似文献   

3.
The eastern North American spring ephemeral Claytonia virginica (Portulacaceae) is well known for its great variation in chromosome number. The origin and significance of this cytological diversity has been a source of some controversy over the last two decades; in particular it has been suggested that one major source of variation could have arisen by allopolyploidy following hybridization between C. virginica and the second eastern North American representative of the genus, C. caroliniana. However, there has been no rigorous demonstration of natural hybridization between these taxa, and attempts to document hybridity have been hampered by a paucity of distinguishing morphological characters. Nuclear ribosomal gene markers are, however, able to distinguish between the two species and provide a means of identifying hybrid plants. We have found a locality in central New York state where the two species cooccur; in this population, hybrid individuals with additive ribosomal gene patterns are found in a zone of overlap between the two parental species. These hybrids are morphologically intermediate and have reduced pollen stainabilities, and appear to be F1 individuals.  相似文献   

4.
Buds of Claytonia virginica were examined from 9 locations in the metropolitan New York area. A large amount of meiotic irregularity was characteristic of the populations studied. Chromosome counts on pollen mother cells were higher than any reported previously for the taxon, which contains an extensive aneuploid series including at least 40 different numbers ranging from 2n = 12 to ca. 190. In one New Jersey population, plants having approximately 90 chromosomes were associated with those having only 16. All the observations indicated that Claytonia virginica is an unusual species with an ability to tolerate fluctuations in chromosome material without apparent effects on fertility and morphology.  相似文献   

5.
TheVicia sativa aggregate contains plants with different chromosome numbers karyotypes; they are still cross-compatible and have partially fertile F1-hybrids. There is also wide adaptive radiation and geographic distribution. The seed protein profiles ofV. sativa agg. are remarkably variable but no band or bands could be related to a specific karyotype, chromosome number or taxon, and variation within and between karyotypes are of the same magnitude. It is suggested that variation in the seed proteins ofV. sativa agg. might be an important agent for acquiring ecological flexibility, and that it is probably enhanced by interkaryotypic hybridization.  相似文献   

6.
Chromosome numbers of n = 8, 12, and 16 were determined for 11 populations of Claytonia lanceolata occurring in the southwestern Rocky Mountains of Utah. No evidence of the wide infra-populational variation of chromosome numbers known in the related eastern species, C. virginica, was observed. The chromosome numbers in C. lanceolata probably evolved from a base number of x = 8. Diploids(n = 8) apparently produced tetraploids (n = 16) of putative autoploid origin. Pairing relationships, including the presence of univalents, bivalents, and trivalents, suggest the chromosome numbers of n = 12 are triploids derived from natural hybridization between diploids and tetraploids. Higher chromosome numbers previously reported in C. lanceolata from Colorado, and presumably based on x = 12, can be explained by subsequent polyploid increases in the triploids. The diploid and tetraploid populations analyzed in this study occupy different ecological habitats. The diploids occur at lower elevations along the foothills, whereas the tetraploids are restricted to higher montane and sub-alpine elevations. The triploids were discovered at intermediate elevations.  相似文献   

7.
Chromosome number changes and karyotype evolution play an important role in plant genome diversification and eventually in speciation. The genus Ajuga L. (Lamiaceae) has approximately 50 species distributed in temperate to subtropical regions. Four of these species are currently recognized in Korea (A. decumbens Thunb., A. multiflora Bunge, A. nipponensis Makino and A. spectabilis Nakai). Understanding the karyotype evolution in Ajuga has been hampered by the small size of their chromosomes and symmetrical karyotypes. Here we used classic Feulgen staining to establish chromosome numbers and construct karyotypes of the four species of Ajuga recognized in Korea and flow cytometry was used to study their variation in genome. The chromosome number of all investigated plants was 2n = 32. Still, the 2C DNA content ranged from 2.18 pg (A. decumbens) to 4.53 pg (A. multiflora). While the chromosome numbers were the same for all investigated species, the genome size variation could potentially be used as a taxonomic marker.  相似文献   

8.
Pollinators that collect pollen – and specifically, pollen‐specialist bees – are often considered to be the best pollinators of a (host) plant. Although pollen collectors and pollen specialists often benefit host plants, especially in the pollen that they deliver (their pollination “effectiveness”), they can also exact substantial costs because they are motivated to collect as much pollen as possible, reducing the proportion of pollen removed that is subsequently delivered to stigmas (their pollination “efficiency”). From the plant perspective, pollen grains that do not pollinate conspecific stigmas are “wasted”, and potentially costly. We measured costs and benefits of nectar‐collecting, pollen‐collecting, and pollen‐specialist pollinator visitation to the spring ephemeral Claytonia virginica. Visits by the pollen‐specialist bee Andrena erigeniae depleted pollen quickly and thoroughly. Although all pollinators delivered roughly the same number of grains, the pollen specialist contributed most to C. virginica pollen delivery because of high visitation rates. However, the pollen specialist also removed a large number of grains; this removal may be especially costly because it resulted in the depletion of pollen grains in C. virginica populations. While C. virginica appears to rely on pollen transfer by the pollen specialist in these populations, nectar‐collecting visitors could provide the same benefit at a lower cost if their visitation rates increased. Pollen depletion affects a pollinator's value to plants, but is frequently overlooked. If they lower the effectiveness of future floral visitors, visits by A. erigeniae females to C. virginica may be more detrimental than beneficial compared to other pollinators and may, in some circumstances, reduce plant fitness rather than increase it. Therefore, A. erigeniae and C. virginica may vary in their degree of mutualism depending on the ecological context.  相似文献   

9.
Meiocytes in three morphologically similar but cytologically different wild populations of Claytonia virginica L. were examined. Over a three-year period levels of spontaneous chromosome breakage were consistent for each population but differed between populations. Random samples of inflorescences from two of the populations were treated with 0.005 % aqueous solutions of nucleic acid precursors: adenine, adenosine, thymine, thymidine, guanosine 5'-monophosphate (GMP), and cytosine 5'-monophosphate (CMP). Statistically significant increases in chromosome breakage were observed in the population with little background breakage when inflorescences were treated with adenosine, thymine, thymidine, GMP, and CMP. In the population with moderate spontaneous breakage, a significant increase was observed only in plants treated with adenosine. Breakage induced with nucleic acid precursors was similar to that which occurred spontaneously; the predominant aberration was the single bridge.  相似文献   

10.
Considerable karyotypic differentiation has occurred within the group of taxa comprising the eastern North American members of the genus Claytonia. Patterns of karyotypic differentiation are congruent with evolutionary groupings based on flavonoid chemistry, particularly at the diploid level. The 2n = 16 diploid chemotype found in both C. caroliniana and C. virginica possesses a karyotype composed entirely of metacentric chromosomes, while acrocentric chromosomes predominate in the karyotypes of the 2n = 12 and 2n = 14 diploid chemotypes of C. virginica. The 2n = 16 diploid also has a karyotype significantly larger than those of the other diploid cytotypes. Polyploid karyotypes of both species show varying degrees of divergence from their presumed diploid progenitors.  相似文献   

11.
Geographical variation in pollinators visiting a plant can produce plant populations adapted to local pollinator environments. We documented two markedly different pollinator climates for the spring ephemeral wildflower Claytonia virginica: in more northern populations, the pollen‐specialist bee Andrena erigeniae dominated, but in more southern populations, A. erigeniae visited rarely and the bee‐fly Bombylius major dominated. Plants in the northern populations experienced faster pollen depletion than plants in southern populations. We also measured divergent pollen‐related plant traits; plants in northern populations produced relatively more pollen per flower and anther dehiscence was more staggered than plants in southern populations. These plant traits might function to increase pollen dispersal via the different pollen vectors.  相似文献   

12.
Chromosome numbers and karyotypes of species from four American Zamiaceae (Cycadales) are reported. Zamia shows interspecific and intraspecific chromosome variation, whereas Microcycas, Ceratozamia, and Dioon have constant karyotypes within each genus. In Zamia, all karyotypes have the same number of submetacentric and acrocentric chromosomes, but they differ in the number of metacentric and telocentric chromosomes. Centric fission of metacentric chromosomes is proposed to explain the karyotypic variation in this genus. Zamia shows karyological relationships with Microcycas and Ceratozamia, whereas Dioon appears very distinct from the other American cycad genera. Affinity among Zamia, Ceratozamia, and Microcycas karyotypes and distinctiveness of Dioon karyotypes are supported by comparative analysis of phenotypic characters in the four genera.  相似文献   

13.
AKIYAMA, S., WAKABAYASHI, M. & OHBA, H., 1992. Chromosome evolution in Himalayan Impatiens (Balsaminaceae). Chromosome numbers and karyotypes have been investigated in species of Himalayan Impatiens . In addition to confirming previous chromosome counts, the presence of a tetraploid taxon ( I. exilis) is revealed. In central and east Nepal species with x = 9 are more common than those with other basic numbers and this number is shown to be one of the most frequent numbers in the genus. Most species with x = 9 have a bimodal karyotype. The species relationships are discussed.  相似文献   

14.
Epidendrum is one of the largest Neotropical genera of Orchidaceae and comprises approximately 1500 species. Only 2.8% of these species have been studied cytologically, demonstrating chromosome numbers ranging from n = 12 in E. fulgens to n = 120 in E. cinnabarinum. The present work evaluated the evolution of the karyotypes of Epidendrum spp. based on data gathered from the literature and from analyses of the karyotypes of 16 Brazilian species (nine previously unpublished). The appearance of one karyotype with n = 12 with one larger chromosome pair in subgenus Amphiglottium appears to have occurred at the beginning of the divergence of this lineage, and x = 12 probably represents the basic number of this subgenus. Epidendrum secundum exhibits wide variation in chromosome numbers, with ten different cytotypes found in 22 Brazilian populations, seven of which were new counts: 2n = 30, 42, 50, 54, 56, 58 and 84. Most lineages of Epidendrum seem to have been secondarily derived from one ancestral stock with x = 20, as is seen in the majority of the present‐day representatives of the genus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 329–344.  相似文献   

15.
Pollinators that forage indiscriminately can transfer pollen from one species to another, reducing the amount that reaches conspecific flowers. I present evidence that the presence of another plant species visited by the same pollinators can also reduce pollen dispersal distances and outcrossing. This has the potential to influence gene flow and reproductive success. Pollen carryover and movement patterns were measured for the shared insect pollinators of Stellaria pubera and Claytonia virginica in North Carolina. Bee flies deposited similar amounts of Stellaria pollen on a series of pistillate Claytonia flowers as on a series of pistillate Stellaria flowers. In arrays of potted plants, flies and solitary bees visited most flowers on a plant before leaving and then flew to a nearby plant chosen independently of species; 95% of moves were to one of 12 nearest neighbors. These measures of pollen carryover and movement patterns were used in a set of computer simulations to predict pollen dispersal distances. The simulations suggested that C. virginica substantially reduces outcrossing and pollen flow in S. pubera. These predictions were tested by tracking dye movement from anthers in populations of potted plants. Addition of C. virginica reduced the mean squared distance moved by dye to receptive S. pubera flowers by 23% and reduced the amount of dye moved by 51%. The estimated pollen component of gene flow was also much lower in a natural population of 5. pubera mixed with C. virginica than in the synthetic single-species populations.  相似文献   

16.
Chromosome numbers of 114 individuals from twelve populations ofSedum aizoon L. var.aizoon (Crassulaceae) are reported. They include 37 different chromosome numbers ranging from 2n=71 to 124. Although the chromosome number variation has been found in all populations examined, no correlation with geographical distribution could not be found. Various kinds of meiotic irregularities, i.e., multivalents, univalents, chromosome lagging, and polysporous “tetrad” formation have been found. These irregularities lead to the formation of gametes with various chromosome numbers. All aneuploid plants set seeds and seem to reproduce sexually. The extensive aneuploidy in var.aizoon seems to be caused by the unequal chromosome segregation in meiosis and the subsequent fertilization of gametes with various chromosome numbers.  相似文献   

17.
Aster ageratoides var. pendulus, a recently described taxon, is endemic to Mt Hupingshan of north‐western Hunan, China. Field observations and collections were made from the only known population. Root‐tip squashes were used to determine the chromosome numbers of 96 plants and 61 seedlings from the achenes of eight sample plants. The results show that var. pedulus is a swarm of 30 cytotypes with nearly continuous chromosome numbers from 2n = 60 to 2n = 92. Chromosome numbers of 61 seedlings vary from 2n = 61 to 2n = 91, belonging to 18 cytotypes. The chromosome number variation of var. pendulus is highly unusual not only in the A. ageratoides polyploid complex but also in angiosperms. Such an enormous continuous variation of chromosome numbers could have arisen by the combined effect of hybridization, recent origin and high levels of polyploidy. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 378–387.  相似文献   

18.
Chromosome numbers are reported for 156 collections representing 100 taxa of Umbelliferae. Approximately two thirds of the collections are from Mexico, Central and South America and indicate a high percentage of polyploid species in certain genera found in this area. Chromosome numbers for plants belonging to 78 taxa are published here for the first time, previously published chromosome numbers are verified for 18 taxa and chromosome numbers differing from those previously published are reported in seven instances. No chromosome counts have been previously published for nine of the genera included here. Further aneuploidy and polyploidy were found in Eryngium, and Lomatium columbianum has been found to be a high polyploid with 2n = 14x. Every chromosome count is referable to a cited herbarium specimen.  相似文献   

19.
Chromosome numbers are reported for 167 collections representing 100 taxa of Umbelliferae. More than four-fifths of the counts apply to members of subfamilies Hydrocotyloideae (29) and. Saniculoideae (50); the remaining 21 belong to Apioideae. Chromosome numbers of plants belonging to 68 taxa are published here for the first time; chromosome numbers are verified for 23 taxa; and chromosome numbers differing from those published previously are reported in nine instances. No chromosome counts have previously been reported for 19 of the genera included. Polyploidy has been established for Azorella, Mulinum, Coaxana, Enantiophylla, and Tiozimia.  相似文献   

20.
The karyotypes of nine Tanacetum taxa distributed in north-east Anatolia, Turkey, were determined and evaluated by cluster analysis and principal-components analysis. Chromosome numbers were 2n = 2x = 18 (8 taxa) and 4x = 36 (1 taxon). Somatic chromosome numbers of two taxa and a new ploidy level in one taxon are reported for the first time. Karyotype analysis indicated that chromosomes of Tanacetum taxa have predominantly median centromeres. The taxa studied differed significantly in the size of the short arms and long arms, and the arm ratio of each pair of homologous chromosomes, indicating structural rearrangements of the chromosomes have been involved in diversification of the taxa. They were placed in 2A, 3A, and 2B of Stebbins’ karyotype classification, showing the presence of a primitive symmetrical karyotype in the genus. Several systematic and evolutionary aspects of the genus are discussed on the basis of karyological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号